期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Discussion on the Problem of Salt Gland of Glycine soja 被引量:6
1
作者 周三 赵可夫 《Acta Botanica Sinica》 CSCD 2003年第5期574-580,共7页
Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and fiel... Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and field cultivation). The attachment shape and distribution on the surface of stalk and leaf of G. soja plants were observed with scanning electron microscopy (SEM), and the ultrastructure of glandular hair with transmission electron microscopy (TEM). Na+ and Cl- contents in the secretion of the leaf surface and inside the leaf of G. soja subjected to different treatments were measured. The Na+ relative contents in glandular cells, epidermal cells and mesophyllous cells of leaves under different salinities were determined by X-ray microanalysis. Results show that only glandular and epidermal hair exist on the surface attachments of leaves and stalks of G. soja plants. These glandular hair were similar in shape to some salt glands of Gramineae halophytes, and they attached to the vein on the leaf surface. The cell structure of the glandular hair showed the characteristics of common salt glands, such as big vacuoles, dense cytoplasm, a great deal of mitochondria, chloroplast, plasmodesmata and thicker cell walls, etc. The results of Na+ and Cl- contents in the leaf secretion and inside the leaf showed that the glandular hair executed the function of salt-secretion, and when treated with the salt gland inhibitor the salt-secretion process was inhibited. As a result, Na+ and Cl- were mainly accumulated inside G. soja leaves. The results of Na+ X-ray microanalysis under different salinities proved that the three cells of the glandular hair, especially the top cell, possessed strong competence for Na+ accumulation. Above all, the glandular hair were the salt gland, and no other kind of salt glands were found on G. soja plants. The secreting mechanism of the salt gland was also discussed. 展开更多
关键词 Glycine soja salt gland ULTRASTRUCTURE ion compartmentalization
下载PDF
Introduction of AtNHX1 into beet improved salt-tolerance of transgenic plants
2
作者 杨爱芳 Zhao Shilan Yin Xiaoyan Gao Feng Zhang Juren 《High Technology Letters》 EI CAS 2006年第2期182-187,共6页
AtNHX1 gene encoding the Na ^+/H ^+ antiport on the vacuole membrane of Arabidopsis was transferred into small bud tips of 1-3mm in length derived from immature inflorescence cultures of six genotypes of beet ( Bet... AtNHX1 gene encoding the Na ^+/H ^+ antiport on the vacuole membrane of Arabidopsis was transferred into small bud tips of 1-3mm in length derived from immature inflorescence cultures of six genotypes of beet ( Beta vulgaris L. ) by the infection of Agrobacterium tumefaciens and transgenic plants with improved salt-tolerance were obtained. When transgenic plants at 5-leaf stage were potted in sand and irrigated with solutions containing a range of concentrations of NaCl (171-513mM), they showed minor symptoms of damage from salinity and better tolerance than the controls. There were considerable discrepancies of salt-tolerance between transgenic plants originated from the same genotype and also between different genotypes. After vernalization, bolting transgenic plants were enveloped with two layers of gauzes for self-pollination. T1 seedlings tolerant to 342-427mM NaCl were obtained respectively. These results revealed that it was feasible to improve salt-tolerance of beets by the introduction of AtNHX1 gene into cultured bud cells. 展开更多
关键词 Beta vulgaris L. transgene Na^+/H^+ antiport ion compartmentalization SALT-TOLERANCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部