期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Simulated Microgravity Conditions and Carbon Ion Irradiation Induce Spermatogenic Cell Apoptosis and Sperm DNA Damage 被引量:10
1
作者 LI Hong Yan ZHANG Hong +10 位作者 MIAO Guo Ying XIE Yi SUN Chao DI Cui Xia LIU Yang LIU Yuan Yuan ZHANG Xin MA Xiao Fei XU Shuai GAN Lu ZHOU Xin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第9期726-734,共9页
Objective To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk assoc... Objective To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk associated with space environment. Methods Sperm DNA damage indicated by DNA fragmentation index (DFI) and high DNA stainability (HDS) was measured by sperm chromatin structure assay (SCSA). Apoptosis of spermatogenic cells was detected by annexin V-propidium iodide assay. Bax (the expression levels of p53) and proliferating cell nuclear antigen (PCNAI were measured by immunoblotting; p53 and PCNA were located by immunohistology. Results HDS, DFI, apoptosis index, and the expression levels of p53 and Bax were detected to be significantly higher in the experimental groups (P〈0.05) compared with those in the control group, however, the PCNA expression varied to a certain degree, p53- and PCNA- positive expression were detected in each group, mainly in relation to the spermatogonic cells and spermatocytes. Conclusion The findings of the present study demonstrated that simulated microgravity and CIR can induce spermatogenic cell apoptosis and sperm DNA damage. Sperm DNA damage may be one of the underlying mechanisms behind male fertility decline under space environment. These findings may provide a scientific basis for protectint~ astronauts and space traveler's health and safety. 展开更多
关键词 Simulated microgravity Carbon ion irradiation Spermatogenic cells apoptosis Sperm DNAdamage
下载PDF
Carbon ion irradiation-induced DNA damage evokes cell cycle arrest and apoptosis via the pRb/E2F1/c-Myc signaling pathway in p53-deficient prostate cancer PC-3 cells 被引量:2
2
作者 Fang Wang Yi Xiao +6 位作者 Jun-Fang Yan Guo-Min Huang Jin-Hua Zhang Cui-Xia Di Jing Si Hong Zhang Ai-Hong Mao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第3期82-93,共12页
Carbon ion radiotherapy has the advantages of better therapeutic effect and fewer side effects compared with those of X-rays in many kinds of tumors,including prostate cancer,and thus is an attractive treatment approa... Carbon ion radiotherapy has the advantages of better therapeutic effect and fewer side effects compared with those of X-rays in many kinds of tumors,including prostate cancer,and thus is an attractive treatment approach for prostate cancer.However,the biological effects and underlying mechanisms of carbon ion irradiation in prostate cancer are not yet fully understood.Therefore,this study systematically compared the effects of carbon ion irradiation with those of X-ray irradiation on DNA damage response and found that carbon ion irradiation was more effective than X-ray irradiation.Carbon ion irradiation can induce a high level of DNA double-strand break damage,reflected by the number of y-H2 A histone family member X foci,as well as by the foci lasting time and size.Moreover,carbon ion irradiation exhibited strong and long-lasting inhibitory effect on cell survival capability,induced prolonged cell cycle arrest,and increased apoptosis in PC-3 cells.As an underlying mechanism,we speculated that carbon ion irradiation-induced DNA damage evokes cell cycle arrest and apoptosis via the pRb/E2 F1/c-Myc signaling pathway to enhance the radiosensitivity of p53-deficient prostate cancer PC-3 cells.Collectively,the present study suggests that carbon ion irradiation is more efficient than X-ray irradiation and may help to understand the effects of different radiation qualities on the survival potential of p53-deficient prostate cancer cells. 展开更多
关键词 Carbon ion irradiation DNA damage Cell cycle arrest APOPTOSIS C-MYC Prostate cancer
下载PDF
Comparison of total dose effects on SiGe heterojunction bipolar transistors induced by different swift heavy ion irradiation 被引量:2
3
作者 孙亚宾 付军 +6 位作者 许军 王玉东 周卫 张伟 崔杰 李高庆 刘志弘 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期431-437,共7页
The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV C1, 20-MeV Br, and 10-MeV Br ion irradiation, respectively.... The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV C1, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in Ic was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail. 展开更多
关键词 heavy ion irradiation displacement damage SiGe heterojunction bipolar transistor
下载PDF
Impact of the displacement damage in channel and source/drain regions on the DC characteristics degradation in deep-submicron MOSFETs after heavy ion irradiation 被引量:1
4
作者 薛守斌 黄如 +5 位作者 黄德涛 王思浩 谭斐 王健 安霞 张兴 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期597-603,共7页
This paper mainly reports the permanent impact of displacement damage induced by heavy-ion strikes on the deepsubmicron MOSFETs. Upon the heavy ion track through the device, it can lead to displacement damage, includi... This paper mainly reports the permanent impact of displacement damage induced by heavy-ion strikes on the deepsubmicron MOSFETs. Upon the heavy ion track through the device, it can lead to displacement damage, including the vacancies and the interstitials. As the featured size of device scales down, the damage can change the dopant distribution in the channel and source/drain regions through the generation of radiation-induced defects and thus have significant impacts on their electrical characteristics. The measured results show that the radiation-induced damage can cause DC characteristics degradations including the threshold voltage, subthreshold swing, saturation drain current, transconductanee, etc. The radiation-induced displacement damage may become the dominant issue while it was the secondary concern for the traditional devices after the heavy ion irradiation. The samples are also irradiated by Co- 60 gamma ray for comparison with the heavy ion irradiation results. Corresponding explanations and analysis are discussed. 展开更多
关键词 CMOS devices displacement damage heavy ion irradiation gamma ray irradiation
下载PDF
Single event effect in a ferroelectric-gate field-effect transistor under heavy-ion irradiation
5
作者 燕少安 唐明华 +8 位作者 赵雯 郭红霞 张万里 徐新宇 王旭东 丁浩 陈建伟 李正 周益春 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期433-437,共5页
The single event effect in ferroelectric-gate field-effect transistor (FeFET) under heavy ion irradiation is investigated in this paper. The simulation results show that the transient responses are much lower in a F... The single event effect in ferroelectric-gate field-effect transistor (FeFET) under heavy ion irradiation is investigated in this paper. The simulation results show that the transient responses are much lower in a FeFET than in a conventional metal-oxide-semiconductor field-effect transistor (MOSFET) when the ion strikes the channel. The main reason is that the polarization-induced charges (the polarization direction here is away from the silicon surface) bring a negative surface po- tential which will affect the distribution of carders and charge collection in different electrodes significantly. The simulation results are expected to explain that the FeFET has a relatively good immunity to single event effect. 展开更多
关键词 single event effect heavy ion irradiation charge collection ferroelectric memory FEFET
下载PDF
Modulating properties by light ion irradiation:From novel functional materials to semiconductor power devices
6
作者 Ye Yuan Shengqiang Zhou Xinqiang Wang 《Journal of Semiconductors》 EI CAS CSCD 2022年第6期66-77,共12页
In this review,the application of light ion irradiation is discussed for tailoring novel functional materials and for improving the performance in SiC or Si based electrical power devices.The deep traps and electronic... In this review,the application of light ion irradiation is discussed for tailoring novel functional materials and for improving the performance in SiC or Si based electrical power devices.The deep traps and electronic disorder produced by light ion irradiation can modify the electrical,magnetic,and optical properties of films(e.g.,dilute ferromagnetic semiconductors and topological materials).Additionally,benefiting from the high reproducibility,precise manipulation of functional depth and density of defects,as well as the flexible patternability,the helium or proton ion irradiation has been successfully employed in improving the dynamic performance of SiC and Si based PiN diode power devices by reducing their majority carrier lifetime,although the static performance is sacrificed due to deep level traps.Such a trade-off has been regarded as the key point to compromise the static and dynamic performances of power devices.As a result,herein the light ion irradiation is highlighted in both exploring new physics and optimizing the performance in functional materials and electrical devices. 展开更多
关键词 ion irradiation power device CRYSTAL thin film functional materials
下载PDF
Influence of Ga^+ ion irradiation on the magnetisation reversal process and magnetoresistance in CoFe/Cu/CoFe/IrMn spin valves
7
作者 祁先进 王寅岗 +2 位作者 缪雪飞 李子全 黄一中 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期533-538,共6页
Ga^+ ion irradiation is performed on the surfaces of IrMn-based spin valves and the effects of ion irradiation on the magnetisation reversal process and magnetoresistance (MR) are investigated. The results show tha... Ga^+ ion irradiation is performed on the surfaces of IrMn-based spin valves and the effects of ion irradiation on the magnetisation reversal process and magnetoresistance (MR) are investigated. The results show that the exchange bias field and magnetoresistance ratio of the spin valve decrease with the increase of ion dose. The width of the forward step between the free layer and the pinned layer becomes gradually smaller with the increase of ion dose whilst the recoil step tends to be narrower with ion dose increasing up to 6×10^13 ions/cm^2 and the step disappears afterwards. Two oeaks in the R-H curve are found to be asymmetric. 展开更多
关键词 ion irradiation magnetisation reversal MAGNETORESISTANCE exchange bias
下载PDF
Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
8
作者 乔梅 王铁军 +3 位作者 刘泳 刘涛 刘珊 许士才 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期385-390,共6页
The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates befor... The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates before and after 1.0-MeV C ion irradiation with different fluence rates are studied by atomic force microscope and scanning electron microscopy. The atomic vibrational spectra of multilayer ReSe2flakes are detected by micro-Raman spectra. The redshifts of the Raman modes after 1.0-MeV C ion irradiation are observed from the micro-Raman spectra. The elemental compositions and bonding configurations of the multilayer ReSe2samples before and after irradiation processes are characterized by x-ray photoelectron spectroscopy. The structural properties are also investigated by x-ray diffraction, and it is concluded that after 1.0-MeV C ion irradiation process, multilayer ReSe2samples continue to grow on Al2O3substrates, the increase of crystallite size also reveals that the crystallinity is improved with the increase of the layer number after 1.0-MeV C ion irradiation. 展开更多
关键词 ion irradiation MICROSTRUCTURE CRYSTALLINITY surface morphology
下载PDF
Influence of Ga^+ ion irradiation on thermal relaxation of exchange bias field in exchange-coupled CoFe/IrMn bilayers
9
作者 祁先进 王寅岗 +2 位作者 缪雪飞 李子全 黄一中 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期388-392,共5页
This paper reports that the CoFe/IrMn bilayers are deposited by magnetron sputtering on the surfaces of thermallyoxidized Si substrates. It investigates the thermal relaxations of both non-irradiated and Ca^+ ion irr... This paper reports that the CoFe/IrMn bilayers are deposited by magnetron sputtering on the surfaces of thermallyoxidized Si substrates. It investigates the thermal relaxations of both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers by means of holding the bilayers in a negative saturation field. The results show that exchange bias field decreases with the increase of holding time period for both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers. Exchange bias field is also found to be smaller upon irradiation at higher ion dose. This reduction of exchange bias field is attributed to the change of energy barrier induced by ion-radiation. 展开更多
关键词 thermal relaxation exchange bias ion irradiation energy barrier
下载PDF
Modification of Optical Band-Gap of Si Films After Ion Irradiation
10
作者 朱亚滨 王志光 +7 位作者 孙建荣 姚存峰 魏孔芳 缑洁 马艺准 申铁龙 庞立龙 盛彦斌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第7期632-635,共4页
Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin fi... Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin films were irradiated with 94 MeV Xe-ions at fluences of 1.0 × 10^11 ions/cm2, 1.0 × 10^12 ions/cm^2 and 1.0 × 10^13 ions/era2 at room temperature (RT). The nc-Si:H films were irradiated with 9 MeV Xe-ions at 1.0 ×10^12 Xe/cm^2, 1.0 × 10^13 Xe/cm2 and 1.0×10^14 Xe/cm2 at RT. For comparison, mono-crystalline silicon (c-Si) samples were also irradiated at RT with 94 MeV Xe-ions. All samples were analyzed by using an UV/VIS/NIR spectrometer and an X-ray powder diffractometer. Variations of the optical band-gap (Eg) and grain size (D) versus the irradiation fluence were investigated systematically. The obtained results showed that the optical band-gaps and grain size of the thin films changed dramatically whereas no observable change was found in c-Si samples after Xe-ion irradiation. Possible mechanism underlying the modification of silicon thin films was briefly discussed. 展开更多
关键词 ion irradiation silicon film optical band-gap grain size
下载PDF
CRYSTALLIZATION OF Fe_(38)Ni_(39)Si_(10)B_(13) METALLIC GLASS UNDER HELIUM ION IRRADIATION
11
《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第3期204-208,共5页
he crystallization features of Fe38Hi39Si10B13 metallic glass under 100 keV and 6μA/cm2 helium ion irradiation with different doses are reported. It is found that the Fe38 Ni39Si10 B13 metallic glass crystallized und... he crystallization features of Fe38Hi39Si10B13 metallic glass under 100 keV and 6μA/cm2 helium ion irradiation with different doses are reported. It is found that the Fe38 Ni39Si10 B13 metallic glass crystallized under the helium ion irradiation at the temperature lower than the ordinary thermal crystallization temperature. The preferential precipitation phase is FeSi, and followed by the eutectic phase α-Fe. The critical dose for the formation of helium bubbles in the material is around 5x10 ̄16/cm2. The sensitivity of crystallization due to the temperature rising under helium ion irradiation and the mechanism of the sequence of precipitated phase are briefly discussed. 展开更多
关键词 Fe38Ni39Si10B13 metallic glass CRYSTALLIZATion HELIUM ion irradiation
下载PDF
Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
12
作者 Chun-Yang Luo Bo Cui +8 位作者 Liu-Jie Xu Le Zong Chuan Xu En-Gang Fu Xiao-Song Zhou Xing-Gui Long Shu-Ming Peng Shi-Zhong Wei Hua-Hai Shen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期404-411,共8页
Microstructure evolution and hardening effect of pure tungsten and W-1.5%ZrO_(2) alloy under carbon ion irradiation are investigated by using transmission electron microscopy and nano-indentation.Carbon ion irradiatio... Microstructure evolution and hardening effect of pure tungsten and W-1.5%ZrO_(2) alloy under carbon ion irradiation are investigated by using transmission electron microscopy and nano-indentation.Carbon ion irradiation is performed at 700℃ with irradiation damages ranging from 0.25 dpa to 2.0 dpa.The results show that the irradiation defect clusters are mainly in the form of dislocation loop.The size and density of dislocation loops increase with irradiation damages intensifying.The W-1.5%ZrO_(2) alloy has a smaller dislocation loop size than that of pure tungsten.It is proposed that the phase boundaries have the ability to absorb and annihilate defects and the addition of ZrO_(2) phase improves the sink strength for irradiation defects.It is confirmed that the W-1.5% ZrO_(2) alloy shows a smaller change in hardness than the pure tungsten after being irradiated.From the above results,we conclude that the addition of ZrO_(2) into tungsten can significantly reduce the accumulation of irradiated defects and improve the irradiation resistance behaviors of the tungsten materials. 展开更多
关键词 W-ZrO_(2)alloy carbon ion irradiation MICROSTRUCTURE surface hardness
下载PDF
Investigation of heavy ion irradiation effects on a charge trapping memory capacitor by C-V measurement
13
作者 陈麒宇 杨西荣 +6 位作者 李宗臻 毕津顺 习凯 张振兴 翟鹏飞 孙友梅 刘杰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期364-368,共5页
Heavy ion irradiation effects on charge trapping memory(CTM)capacitors with TiN/Al_(2)O_(3)/HfO_(2)/Al_(2)O_(3)/HfO_(2)/SiO_(2)/p-Si structure have been investigated.The ion-induced interface charges and oxide trap ch... Heavy ion irradiation effects on charge trapping memory(CTM)capacitors with TiN/Al_(2)O_(3)/HfO_(2)/Al_(2)O_(3)/HfO_(2)/SiO_(2)/p-Si structure have been investigated.The ion-induced interface charges and oxide trap charges were calculated and analyzed by capacitance-voltage(C-V)characteristics.The C-V curves shift towards the negative direction after swift heavy ion irradiation,due to the net positive charges accumulating in the trapping layer.The memory window decreases with the increase of ion fluence at high voltage,which results from heavy ion-induced structural damage in the blocking layer.The mechanism of heavy ion irradiation effects on CTM capacitors is discussed in detail with energy band diagrams.The results may help to better understand the physical mechanism of heavy ion-induced degradation of CTM capacitors. 展开更多
关键词 charge trapping memory(CTM) high-k dielectric stack heavy ion irradiation reliability
下载PDF
Carbon Ion Irradiation Induces Reduction of β-tubulin in Sperm of Pubertal Mice
14
作者 LI Hong Yan HE Yu Xuan +3 位作者 ZHANG Hong LIU Yuan Yuan MIAO Guo Ying ZHAO Qiu Yue 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第2期130-133,共4页
Microtubules are involved in a variety of cellular functions such as cell division, intracellular transport, maintenance of cell polarity and flagella and ciliary motility. The heterogeneity of tubulin and microtubule... Microtubules are involved in a variety of cellular functions such as cell division, intracellular transport, maintenance of cell polarity and flagella and ciliary motility. The heterogeneity of tubulin and microtubule-associated proteins is responsible for these different microtubule functions. Many studies have confirmed that the structure and function of the different α-tubulin and β-tubulin subunits can affect the microtubule. The sperm axoneme microtubule has linear fiber filaments which are polymerized by heterodimeric a and β-tubulin, each with a molecular mass of approximately 50 kD[1]. 展开更多
关键词 head tubulin in Sperm of Pubertal Mice Carbon ion irradiation Induces Reduction of
下载PDF
Structural modification of C_(60) films induced by 300-keV Xe-ion irradiation
15
作者 姚存峰 金运范 +3 位作者 王志光 庞立龙 申铁龙 朱亚滨 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期325-330,共6页
The structural modification of C60 films induced by 300-keV Xe-ion irradiation was investigated. The irradiated C60 films were analysed using Fourier transform infrared spectroscopy, the Raman scattering technique, ul... The structural modification of C60 films induced by 300-keV Xe-ion irradiation was investigated. The irradiated C60 films were analysed using Fourier transform infrared spectroscopy, the Raman scattering technique, ultraviolet/visible spectrophotometry and atomic force microscopy. The analysis results indicate that the Xe-ion irradiation induces polymerization and damage of the C60 molecule and significantly modifies the surface morphology and the optical property of the C60 films. The damage cross-section for the C60 molecule was also evaluated. 展开更多
关键词 C60 films ions irradiation damage POLYMERIZATion
下载PDF
Microstructure evolution of T91 steel after heavy ion irradiation at 550℃
16
作者 Ligang Song Bo Huang +6 位作者 Jianghua Li Xianfeng Ma Yang Li Zehua Fang Min Liu Jishen Jiang Yanying Hu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期61-69,共9页
Fe-Cr ferritic/martensitic(F/M)steels have been proposed as one of the candidate materials for the Generation IV nuclear technologies.In this study,a widely-used ferritic/martensitic steel,T91 steel,was irradiated by ... Fe-Cr ferritic/martensitic(F/M)steels have been proposed as one of the candidate materials for the Generation IV nuclear technologies.In this study,a widely-used ferritic/martensitic steel,T91 steel,was irradiated by 196-MeV Kr^(+)ions at 550℃.To reveal the irradiation mechanism,the microstructure evolution of irradiated T91 steel was studied in details by transmission electron microscope(TEM).With increasing dose,the defects gradually changed from black dots to dislocation loops,and further to form dislocation walls near grain boundaries due to the production of a large number of dislocations.When many dislocation loops of primary a0/2<111>type with high migration interacted with other defects or carbon atoms,it led to the production of dislocation segments and other dislocation loops of a0<100>type.Lots of defects accumulated near grain boundaries in the irradiated area,especially in the high-dose area.The grain boundaries of martensite laths acted as important sinks of irradiation defects in T91.Elevated temperature facilitated the migration of defects,leading to the accumulation of defects near the grain boundaries of martensite laths. 展开更多
关键词 T91 steel high energy Kr ions irradiation irradiation defects transmission electron microscope(TEM)
下载PDF
Effect of high-energy Ne ions irradiation on mechanical properties difference between Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5)metallic glass and crystalline W
17
作者 李娜 张立松 +3 位作者 张小楠 宫丽悦 羌建兵 梅显秀 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期14-21,共8页
In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed t... In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials. 展开更多
关键词 heavy ions irradiation displacement damage metallic glass crystalline W mechanical property
下载PDF
Coupling effects of stress and ion irradiation on the mechanical behaviors of copper nanowires 被引量:6
18
作者 YANG ZhenYu JIAO FeiFe +1 位作者 LU ZiXing WANG ZhiQiao 《Science China Chemistry》 SCIE EI CAS 2013年第3期498-505,共8页
By using molecular dynamics simulations,we studied the ion irradiation induced damage in mechanically strained Cu nanowires and evaluated the effects of damage on the mechanical properties of nanowires.The stresses in... By using molecular dynamics simulations,we studied the ion irradiation induced damage in mechanically strained Cu nanowires and evaluated the effects of damage on the mechanical properties of nanowires.The stresses in the pre-strained nanowires can be released significantly by the dislocation emission from the cascade core when the strain is greater than 1%.In addition,comparison of the stress-strain relationships between the defect-free nanowire and the irradiated ones indicates that ion irradiation reduces the yield strength of the Cu nanowires,and both the yield stress and strain decrease with the increase of irradiation energy.The results are consistent with the microscopic mechanism of damage production by ion irradiation and provide quantitative information required for accessing the stability of nanomaterials subjected to mechanical loading and irradiation coupling effects. 展开更多
关键词 ion irradiation NANOWIRES molecular dynamics VACANCY DISLOCATion
原文传递
Effect of Ni^(7+) Ion Irradiation on Structure and Ammonia Sensing Properties of Thermally Oxidized Zinc and Indium Films 被引量:3
19
作者 Amandeep Kaur Bal Rajinder Singh R.K.Bedi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第8期700-706,共7页
ZnO and In203 films were prepared by thermal oxidation of vacuum deposited zinc and indium films, respec- tively onto the glass substrate at 30 ℃. The fabricated films have been irradiated with 100-MeV Ni7+ ions at ... ZnO and In203 films were prepared by thermal oxidation of vacuum deposited zinc and indium films, respec- tively onto the glass substrate at 30 ℃. The fabricated films have been irradiated with 100-MeV Ni7+ ions at different fluences ranging from 5×1011 to 5×1013 ions/cm2. The structural and gas sensing properties of pristine and irradiated films have been discussed. X-ray diffraction (XRD) pattern of pristine and irradiated films reveal that the films are polycrystalline in nature and crystallinity increases after irradiation. In this study, highly porous In203 nanorods evolved when being irradiated at a fluence of 5×1013 ions/cm2 while ZnO film shows decrease in number of nanowires. The ammonia sensing performance of the Ni^7+ irradiated In203 films shows an improvement as compared to its pristine counterpart. 展开更多
关键词 Thermal oxidation ZnO film In203 film ion irradiation Gas sensing
原文传递
Atomic scale structure dominated FCC and B2 responses to He ion irradiation in eutectic high-entropy alloy AlCoCrFeNi_(2.1) 被引量:2
20
作者 Jingyu Pang Ting Xiong +5 位作者 Wenfan Yang Hualong Ge Xiaodong Zheng Miao Song Hongwei Zhang Shijian Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第34期87-95,共9页
Radiation-tolerant materials are widely desired in nuclear reactors. High-entropy alloys(HEAs) exhibiting superior mechanical performance and swelling tolerance are being considered as next-generation nuclear structur... Radiation-tolerant materials are widely desired in nuclear reactors. High-entropy alloys(HEAs) exhibiting superior mechanical performance and swelling tolerance are being considered as next-generation nuclear structural materials. However, an understanding of HEAs irradiation tolerance at an atomic scale is still lacking. In this study, the atomic scale irradiation response of AlCoCrFeNi_(2.1), composed of face-centered cubic(FCC) phase and B2 phase, has been systematically investigated at 298 and 723 K. The bubble volume ratio of the B2 phase is much larger than that of the FCC phase under the same irradiation conditions, and hence, the FCC phase has superior swelling tolerance than the B2 phase. Also, order-disorder transformation occurred in both L12and B2 phases. The different irradiation responses between the FCC and B2 phases, depend firstly on composition and secondly on crystal structure. The higher compositional complexity and complicated atomic-level lattice environment of the FCC phase contribute to better radiation performance than B2 phase. The results pave a way for exploring radiation-tolerant structural high-entropy alloys. 展开更多
关键词 High-entropy alloy AlCoCrFeNi_(2.1) He ion irradiation Radiation tolerance Electron microscopy
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部