Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have ho...Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have homogeneous REEs, but show considerable inter-grain variations by a factor of 2 to 100. The whole rock REE abundances for Colomera, estimated by combining REE data with modal abundances, are relatively LREE-enriched with REEs of -10'CI, which suggest that Colomera silicates were highly differentiated and might represent a low degree partial melt (-10%) of a chondritic source. REE geochemistry of Colomera silicate inclusions points to an origin that involves differentiation, dynamic mixing, remelting, reduction, recrystallization, and subsequent rapid cooling near the surface of a planetary body.展开更多
It was observed that rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) have significant quenching effects on the fluorescence of anticoagulation factor I (ACF I). The results of the fluorescence titra...It was observed that rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) have significant quenching effects on the fluorescence of anticoagulation factor I (ACF I). The results of the fluorescence titration of ACF I with rare earth ions demonstrate that ACF I has two RE 3+-binding sites, and the rare earth ions and Ca 2+ bind to ACF I competitively in the two similar sites. The association constants K 1 and K 2 of ACF I with each rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) are close to each other, which indicates the structural similarity of the two binding sites in ACF I. Although the ionic radii of Nd 3+, Sm 3+, Eu 3+, Gd 3+ and Tb 3+ are different, both their K 1 and K 2 are similar, respectively. This reveals the conformational flexibility of the two binding sites in ACF I, which offers a possibility for Ca 2+ to take play in the inducing conformational changes of ACF I and the promoting the binding of ACF I with activated coagulation factor X.展开更多
in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-...in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-ity in d 18O values, with variation in different rocks from 8.5 to +9.7 and within one sample from 2 to 12. No measurable difference in d 18O was observed between proto-lith magmatic (detrital) zircons and metamorphic recrystal-lized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the meta-morphic zircons have inherited the oxygen isotopic composi-tions of protolith zircons despite the HP to UHP metamor-phism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxy-gen isotope composition are recognized, with one having d 18O values of 6—7 for old protolith of 1.9—2.5 Ga ages and the other 0—2 for young protolith of 0.7—0.8 Ga ages. The latter anomalously low d 18O values of zircons in-dicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.展开更多
This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton...This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (-1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW-SEE direction to the southern margin of the North China Craton.展开更多
Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe cons...Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.展开更多
To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpe...To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpendicular to the diagnosing plane. Experiments indicate that,with a gas volume flow rate and incident microwave power of 4 sccm and 8.8 W, respectively,the gas was ionized to form plasma with a luminous ring. When the incident microwave power was above 27 W, the luminous ring was converted to a bright column, the dark area near its axis was narrowed, and the microwave power absorbing efficiency was increased. This indicates that there was a mode transition phenomenon in this ECR ion source when the microwave power increased. The diagnosis shows that, at an incident microwave power of 17.4 W, the diagnosed electron temperature and ion density were below 8 eV and 3×10^17 m^-3, respectively, while at incident microwave power levels of 30 W and 40 W, the maximum electron temperature and ion density were above 11 eV and 6.8×10^17 m^-3, respectively. Confined by magnetic mirrors, the higher density plasma region had a bow shape, which coincided with the magnetic field lines but deviated from the ECR layer.展开更多
Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressur...Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressure and microwave power on the ion temperature and density were analyzed. The spatial distribution of the ion parameters was also investigated by the ion sensitive probes with a tunable radial depth installed on different probe windows along the chamber axis. Results showed that the ion density measured by the ion sensitive probe was in good agreement with the electron density measured by the double Langmuir probe. The influ- ence of gas pressure on the ion parameters was stronger than that of microwave power. With the increase in working pressure, the ion temperature decreased monotonously with a decreasing rate larger than that at higher pressure. The ion density first increased to a peak (42.3~ 101~ cm-3) at 1 Pa and then decreased. The ion temperature and density increased little with the increase in the microwave power from 400 W to 800 W, The plasma far away from the resonant point is found to be radially uniform.展开更多
Parameters of hydrogen plasma in a miniature Penning discharge ion source, including the electron temperature and the electron density, were measured by using double probes. The results indicate that the electron dens...Parameters of hydrogen plasma in a miniature Penning discharge ion source, including the electron temperature and the electron density, were measured by using double probes. The results indicate that the electron density increases and the electron temperature decreases with the increase in gas pressure and the discharge current. The electron temperature is about 5 - 9 eV and the electron density is 6.0× 10^13 ~ 1.2 × 10^14 m^-3 while the discharge current is in a range of 50 - 120 μA.展开更多
This paper reported an indirect flow injection chemiluminescence (FI-CL) method for the determination of the drugs tetracycline (TC), chlortetracycline (CTC) and oxytetracycline(OTC) using Cu( Ⅱ ) as a prob...This paper reported an indirect flow injection chemiluminescence (FI-CL) method for the determination of the drugs tetracycline (TC), chlortetracycline (CTC) and oxytetracycline(OTC) using Cu( Ⅱ ) as a probe ion. The CL reaction was induced on-line and after injection of the sample the negative peaks appeared as a result of complexation. The method was applied to the determination of TCs in pharmaceuticals and human urine with recoveries in the range95-105%.展开更多
In order to precisely measure the ion parameters in a microwave electron cyclotron resonance plasma using an ion sensitive probe,the dependences of the current-voltage(I-V)characteristics on the shielding height(h...In order to precisely measure the ion parameters in a microwave electron cyclotron resonance plasma using an ion sensitive probe,the dependences of the current-voltage(I-V)characteristics on the shielding height(h)and the potential difference between inner and outer electrodes(V_B)have been investigated at different working pressures of 0.03 Pa and 0.8 Pa.Results show that the I-V curves at higher pressure are more sensitive to the variation of h than those at lower pressure.The influence of V_B on ion temperature(T_i)measurement becomes more prominent when the pressure is increased from 0.03 Pa to 0.8 Pa.Under both pressures,the optimized h is obtained at the condition where the current reaches zero in the positive voltage region with a suitable V_B of-1.5 V because of effective shielding of the electron E×B drift.展开更多
The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with res...The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.展开更多
In order to improve the interference rejection performance in the measurement of average ion velocity by multi-grid probe, an integral expression is proposed. The integral expression, differing from other expressions ...In order to improve the interference rejection performance in the measurement of average ion velocity by multi-grid probe, an integral expression is proposed. The integral expression, differing from other expressions for probe measurement, avoids the differential operation on the I-V characteristics of multi-grid probe measurement; and by this method, the ion average velocity can be figured out directly by the I-V characteristics of multi-grid probe measurement.展开更多
A new near-infrared fluorophore 2-(2-Aminoethyl) pyridine-tricarbocyanine (1) was rationally designed and synthe-sized as a fluorescent probe for detection of Cu2+ with high selectivity. The response of Probe 1 is bas...A new near-infrared fluorophore 2-(2-Aminoethyl) pyridine-tricarbocyanine (1) was rationally designed and synthe-sized as a fluorescent probe for detection of Cu2+ with high selectivity. The response of Probe 1 is based on the fluorescence quenching upon binding to Cu2+. The sensing performance of the proposed Cu2+-sensitive Probe 1 was then investigated. The probe can be applied to the quantification detection of Cu2+ with a linear concentration range covering from 4.8 × 10-7 to 1.6 × 10-4 mol/L and a detection limit of 9.3 × 10-8 mol/L. The experimental results showed that the response of 1 to Cu2+ was independent of pH in medium condition (pH 6.0-8.0), and exhibited excellent selectivity towards Cu2+ over other common metal cations.展开更多
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul...Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.展开更多
In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength dis- tributions in a nanometer scale t...In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength dis- tributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1 : 1 to 1 : 10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Fhrthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship.展开更多
A new type of self-assembled molecule ON-OFF fluorescence probe for toxic transition metal ions, made up of thiacalix[4]arene, micelle and fluorescence group, has been studied by DFT/TDDFT method combined with experim...A new type of self-assembled molecule ON-OFF fluorescence probe for toxic transition metal ions, made up of thiacalix[4]arene, micelle and fluorescence group, has been studied by DFT/TDDFT method combined with experiment spectra. Since the mechanism of the optical quenching signal response of such self-assembled micelle probe has always been a controversial issue of uncertainty, the spatial construction and geometric structures of the functional units of probe in the Cu2+ ion detecting process were calculated and the mechanism was investigated by the molecular transition orbital pairs method to explore the origination of ON-OFF fluorescence sign response. The results presented that the signal response mechanism of the micelle probe is ascribed to F?rster resonance energy transfer(FRET) which provides new sights different from most of the conclusions by the related research work reported.展开更多
基金This work was partly supported by National Natural Science Foundation of China(Grant No.40325009)by“One-hundred Talent Program”of the Chinese Academy of Sciences.
文摘Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have homogeneous REEs, but show considerable inter-grain variations by a factor of 2 to 100. The whole rock REE abundances for Colomera, estimated by combining REE data with modal abundances, are relatively LREE-enriched with REEs of -10'CI, which suggest that Colomera silicates were highly differentiated and might represent a low degree partial melt (-10%) of a chondritic source. REE geochemistry of Colomera silicate inclusions points to an origin that involves differentiation, dynamic mixing, remelting, reduction, recrystallization, and subsequent rapid cooling near the surface of a planetary body.
文摘It was observed that rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) have significant quenching effects on the fluorescence of anticoagulation factor I (ACF I). The results of the fluorescence titration of ACF I with rare earth ions demonstrate that ACF I has two RE 3+-binding sites, and the rare earth ions and Ca 2+ bind to ACF I competitively in the two similar sites. The association constants K 1 and K 2 of ACF I with each rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) are close to each other, which indicates the structural similarity of the two binding sites in ACF I. Although the ionic radii of Nd 3+, Sm 3+, Eu 3+, Gd 3+ and Tb 3+ are different, both their K 1 and K 2 are similar, respectively. This reveals the conformational flexibility of the two binding sites in ACF I, which offers a possibility for Ca 2+ to take play in the inducing conformational changes of ACF I and the promoting the binding of ACF I with activated coagulation factor X.
基金supported by the National Natural Science Foundation of China(Grants Nos.40033010 and 40273028)the State Key Basic Research Project(Grant No.G1999075503)
文摘in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-ity in d 18O values, with variation in different rocks from 8.5 to +9.7 and within one sample from 2 to 12. No measurable difference in d 18O was observed between proto-lith magmatic (detrital) zircons and metamorphic recrystal-lized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the meta-morphic zircons have inherited the oxygen isotopic composi-tions of protolith zircons despite the HP to UHP metamor-phism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxy-gen isotope composition are recognized, with one having d 18O values of 6—7 for old protolith of 1.9—2.5 Ga ages and the other 0—2 for young protolith of 0.7—0.8 Ga ages. The latter anomalously low d 18O values of zircons in-dicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.
基金supported by the Ministry of Land and Resources of the Peoples’ Republic of China (1212010711815, 1212010811033) and the Beijing SHRIMP Center
文摘This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (-1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW-SEE direction to the southern margin of the North China Craton.
基金financially supported by the National Natural Science Foundation of China (No. 21674011)Beijing Municipal Natural Science Foundation (No. 2172040)
文摘Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.
基金financial support of National Natural Science Foundation of China (Grant No.11475137)
文摘To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpendicular to the diagnosing plane. Experiments indicate that,with a gas volume flow rate and incident microwave power of 4 sccm and 8.8 W, respectively,the gas was ionized to form plasma with a luminous ring. When the incident microwave power was above 27 W, the luminous ring was converted to a bright column, the dark area near its axis was narrowed, and the microwave power absorbing efficiency was increased. This indicates that there was a mode transition phenomenon in this ECR ion source when the microwave power increased. The diagnosis shows that, at an incident microwave power of 17.4 W, the diagnosed electron temperature and ion density were below 8 eV and 3×10^17 m^-3, respectively, while at incident microwave power levels of 30 W and 40 W, the maximum electron temperature and ion density were above 11 eV and 6.8×10^17 m^-3, respectively. Confined by magnetic mirrors, the higher density plasma region had a bow shape, which coincided with the magnetic field lines but deviated from the ECR layer.
基金supported by National Natural Science Foundation of China (No. 10875093)
文摘Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressure and microwave power on the ion temperature and density were analyzed. The spatial distribution of the ion parameters was also investigated by the ion sensitive probes with a tunable radial depth installed on different probe windows along the chamber axis. Results showed that the ion density measured by the ion sensitive probe was in good agreement with the electron density measured by the double Langmuir probe. The influ- ence of gas pressure on the ion parameters was stronger than that of microwave power. With the increase in working pressure, the ion temperature decreased monotonously with a decreasing rate larger than that at higher pressure. The ion density first increased to a peak (42.3~ 101~ cm-3) at 1 Pa and then decreased. The ion temperature and density increased little with the increase in the microwave power from 400 W to 800 W, The plasma far away from the resonant point is found to be radially uniform.
文摘Parameters of hydrogen plasma in a miniature Penning discharge ion source, including the electron temperature and the electron density, were measured by using double probes. The results indicate that the electron density increases and the electron temperature decreases with the increase in gas pressure and the discharge current. The electron temperature is about 5 - 9 eV and the electron density is 6.0× 10^13 ~ 1.2 × 10^14 m^-3 while the discharge current is in a range of 50 - 120 μA.
文摘This paper reported an indirect flow injection chemiluminescence (FI-CL) method for the determination of the drugs tetracycline (TC), chlortetracycline (CTC) and oxytetracycline(OTC) using Cu( Ⅱ ) as a probe ion. The CL reaction was induced on-line and after injection of the sample the negative peaks appeared as a result of complexation. The method was applied to the determination of TCs in pharmaceuticals and human urine with recoveries in the range95-105%.
基金supported by National Natural Science Foundation of China(No.10875093)
文摘In order to precisely measure the ion parameters in a microwave electron cyclotron resonance plasma using an ion sensitive probe,the dependences of the current-voltage(I-V)characteristics on the shielding height(h)and the potential difference between inner and outer electrodes(V_B)have been investigated at different working pressures of 0.03 Pa and 0.8 Pa.Results show that the I-V curves at higher pressure are more sensitive to the variation of h than those at lower pressure.The influence of V_B on ion temperature(T_i)measurement becomes more prominent when the pressure is increased from 0.03 Pa to 0.8 Pa.Under both pressures,the optimized h is obtained at the condition where the current reaches zero in the positive voltage region with a suitable V_B of-1.5 V because of effective shielding of the electron E×B drift.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM026)the National Natural Science Foundation of China(Grant Nos.11374195 and 11404193)the Taishan Scholar Project of Shandong Province,China
文摘The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.
基金National Natural Science Foundation of China(No.50676026)
文摘In order to improve the interference rejection performance in the measurement of average ion velocity by multi-grid probe, an integral expression is proposed. The integral expression, differing from other expressions for probe measurement, avoids the differential operation on the I-V characteristics of multi-grid probe measurement; and by this method, the ion average velocity can be figured out directly by the I-V characteristics of multi-grid probe measurement.
文摘A new near-infrared fluorophore 2-(2-Aminoethyl) pyridine-tricarbocyanine (1) was rationally designed and synthe-sized as a fluorescent probe for detection of Cu2+ with high selectivity. The response of Probe 1 is based on the fluorescence quenching upon binding to Cu2+. The sensing performance of the proposed Cu2+-sensitive Probe 1 was then investigated. The probe can be applied to the quantification detection of Cu2+ with a linear concentration range covering from 4.8 × 10-7 to 1.6 × 10-4 mol/L and a detection limit of 9.3 × 10-8 mol/L. The experimental results showed that the response of 1 to Cu2+ was independent of pH in medium condition (pH 6.0-8.0), and exhibited excellent selectivity towards Cu2+ over other common metal cations.
基金Supported by National Natural Science Foundation of China(Grant No.51375363)
文摘Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
基金supported in part by External Cooperation Program of Chinese Academy of Sciences(No.GJHZ1218)National Natural Science Foundation of China(No.61004133)SSSTC JRP awards 2011(IZLCZ2 138953)
文摘In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength dis- tributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1 : 1 to 1 : 10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Fhrthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship.
基金supported by the Natural Science Foundation of Liaoning Province(201602516)Shenyang Project of Young and Middle-aged Innovative Talents of Science and Technology(RC170244)
文摘A new type of self-assembled molecule ON-OFF fluorescence probe for toxic transition metal ions, made up of thiacalix[4]arene, micelle and fluorescence group, has been studied by DFT/TDDFT method combined with experiment spectra. Since the mechanism of the optical quenching signal response of such self-assembled micelle probe has always been a controversial issue of uncertainty, the spatial construction and geometric structures of the functional units of probe in the Cu2+ ion detecting process were calculated and the mechanism was investigated by the molecular transition orbital pairs method to explore the origination of ON-OFF fluorescence sign response. The results presented that the signal response mechanism of the micelle probe is ascribed to F?rster resonance energy transfer(FRET) which provides new sights different from most of the conclusions by the related research work reported.