期刊文献+
共找到15,313篇文章
< 1 2 250 >
每页显示 20 50 100
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
1
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
下载PDF
Wetting sub-nanochannels via ionic hydration effect for improving charging dynamics 被引量:1
2
作者 Yayun Shi Xiaoli Zhao +5 位作者 Qihang Liu Zhenghui Pan Congcong Liu Shanyi Zhu Zhijun Zuo Xiaowei Yang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期473-480,共8页
The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is chal... The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is challenging because of the hydrophobic extreme confinement.We propose wetting the channels by the exothermic hydration process of pre-intercalated ions,the effect of which varies distinctly with different ionic hydration structures and energies.Compared to the failed pre-intercalation of SO_(4)^(2-),HSO_(4)^(-) with weak hydration energy results in a marginal effect on the HOMO(Highest Occupied Molecular Orbital)level of water to avoid water splitting during the electrochemical intercalation.Meanwhile,the ability of water introduction is reserved by the initial incomplete dissociation state of HSO_(4)^(-),so the consequent exothermic reionization and hydration processes of the intercalated HSO_(4)^(-) promote the water introduction into sub-nanochannels,finally forming the stable confined water through hydrogen bonding with functional groups.The wetted channels exhibit a significantly enhanced ionic diffusion coef-ficient by~9.4 times. 展开更多
关键词 Sub-nanochannels ionic hydration ionic transport SUPERCAPACITORS Confined water
下载PDF
Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes
3
作者 Haiman Hu Jiajia Li +3 位作者 Yue Wu Wenhao Fang Haitao Zhang Xiaoyan Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期110-119,共10页
The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambigu... The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambiguous. Herein, IL was immobilized on SiO_(2)(SiO_(2)@IL-C) and then used to prepare the confined SCPEs together with LiTFSI and PEO to study the impacts of confined-IL on the properties and performance of electrolytes and reveal the Li+transport mechanism. The results show that, compared to the IL-unconfined SCPE, the IL-confined ones exhibit better performance of electrolytes and cells, such as higher ionic conductivity, higher t+Li, and wider electrochemical windows, as well as more stable cycle performance, due to the increased dissociation degree of lithium salt and enlarged polymer amorphousness. The finite-element/molecular-dynamics simulations suggest that the IL confined on the SiO_(2) provided an additional Li+transport pathway(Li+→ SiO_(2)@IL-C) that can accelerate ion transfer and alleviate lithium dendrites, leading to ultrastable stripping/plating cycling over 1900 h for the Li/SCPEs/Li symmetric cells. This study demonstrates that IL-confinement is an effective strategy for the intelligent approach of high-performance lithium metal batteries. 展开更多
关键词 ionic liquid CONFINEMENT ionic transport pathway Lithium-ion transport kinetics Lithium metal batteries
下载PDF
Enhancing CO_(2) transport with plasma-functionalized ionic liquid membranes
4
作者 舒茹晨 许卉 +5 位作者 裴晨霄 王楠 刘新刚 侯剑源 袁圆 张仁熙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期74-81,共8页
The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me... The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis. 展开更多
关键词 ionic liquids carbon dioxide supported ionic liquid membranes facilitated transport radiofrequency plasma
下载PDF
An ionic liquid-assisted strategy for enhanced anticorrosion of low-energy PEO coatings on magnesium–lithium alloy 被引量:2
5
作者 You Zhang Chuping Chen +3 位作者 Haoyue Tian Shuqi Wang Chen Wen Fei Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2380-2396,共17页
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab... A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance. 展开更多
关键词 Magnesium-lithium alloy Plasma electrolytic oxidation Low energy ionic liquid Corrosion resistance
下载PDF
Phosphotungstic acid ionic liquid for efficient photocatalytic desulfurization:Synthesis,application and mechanism 被引量:1
6
作者 Chenchao Hu Suhang Xun +5 位作者 Desheng Liu Junjie Zhang Minqiang He Wei Jiang Huaming Li Wenshuai Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期101-111,共11页
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu... An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value. 展开更多
关键词 Photocatalytic desulfurization EXTRACTION ionic liquid CTAC-HPW
下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:1
7
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 ionic liquids ASSEMBLY Silver nanowires MXene nanosheets Flexible transparent electrodes
下载PDF
Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction 被引量:1
8
作者 Xueke Wang Jinyu Zi +5 位作者 Yi Chen Qiang Wu Zhimin Xiang Yongqiang Tu Peng Yang Yanfen Wan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期218-229,共12页
Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperce... Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI). 展开更多
关键词 bio-template method integrated device ionic skin skin-like microstructure tri-modal pressure sensing
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting 被引量:1
9
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 ionic liquid Electrochemical water splitting Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Ionic liquid-assisted preparation of hydroxyapatite and its catalytic performance for decarboxylation of itaconic acid
10
作者 Shutong Pang Hualiang An +1 位作者 Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期9-15,共7页
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal... The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali. 展开更多
关键词 ionic liquid HYDROXYAPATITE Itaconic acid Methacrylic Decarboxylation reaction
下载PDF
Electrorefining of aluminum in urea-imidazole chloride-aluminum chloride ionic liquids
11
作者 JIANG Yan-ying LIU Ai-min +4 位作者 TANG Zi-rui LU Xiao-qing LIU Feng-guo HU Xian-wei SHI Zhong-ning 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3079-3089,共11页
The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode prod... The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode products,current efficiency and energy consumption of aluminum electrorefining have been investigated.Cyclic voltammetry showed that the electrochemical reduction of Al(Ⅲ)was a one-step three-electron-transfer irreversible reaction,and the electrochemical reaction was controlled by diffusion.The diffusion coefficient of Al(Ⅲ)in urea-BMIC-AlCl_(3)ionic liquids at 313 K was 1.94×10^(−7)cm^(2)/s.The 7075 aluminum alloy was used as an anode for electrorefining,and the cathode products were analyzed by XRD,SEM and EDS.The results from XRD analysis indicated that the main phase of the cathode products was aluminum.The results from SEM and EDS characterization revealed that the cathode product obtained by electrorefining−1.2 V(vs.Al)was dense and uniform,and the mass fraction of aluminum decreased from 99.61%to 99.10%as the experimental temperature increased from 313 K to 333 K.In this work,the optimum experimental conditions were−1.2 V(vs.Al)and 313 K.At this time,the cathode current efficiency was 97.80%,while the energy consumption was 3.72 kW·h/kg. 展开更多
关键词 ionic liquids ELECTROREFINING ALUMINUM cyclic voltammetry
下载PDF
Ionic liquid-based transparent membrane-coupled human lung epithelium-on-a-chip demonstrating PM0.5 pollution effect under breathing mechanostress
12
作者 Bilgesu Kaya Ozlem Yesil-Celiktas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期624-636,共13页
The plausibility of human exposure to particulate matter(PM)has witnessed an increase within the last several years.PM of different sizes has been discovered in the atmosphere given the role of dust transport in weath... The plausibility of human exposure to particulate matter(PM)has witnessed an increase within the last several years.PM of different sizes has been discovered in the atmosphere given the role of dust transport in weather and climate composition.As a regulator,the lung epithelium orchestrates the innate response to local damage.Herein,we developed a lung epithelium-ona-chip platform consisting of easily moldable polydimethylsiloxane layers along with a thin,flexible,and transparent ionic liquid-based poly(hydroxyethyl)methacrylate gel membrane.The epithelium was formed through the culture of human lung epithelial cells(Calu-3)on this membrane.The mechanical stress at the air–liquid interface during inhalation/exhalation was recapitulated using an Arduino-based servo motor system,which applied a uniaxial tensile strength from the two sides of the chip with 10%strain and a frequency of 0.2 Hz.Subsequently,the administration of silica nanoparticles(PM0.5)with an average size of 463 nm to the on-chip platform under static,dynamic,and dynamic+mechanical stress(DMS)conditions demonstrated the effect of environmental pollutants on lung epithelium.The viability and release of lactate dehydrogenase were determined along with proinflammatory response through the quantification of tumor necrosis factor-α,which indicated alterations in the epithelium. 展开更多
关键词 ionic liquid-based membrane Lung Epithelial barrier Mechanostress Organ-on-chip Silica particles
下载PDF
Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors:Insights from dynamic surface tension and solvation analysis
13
作者 Qian Cheng Zerui Lei +1 位作者 Guangjun Mei Jianhua Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2645-2656,共12页
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest... To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions. 展开更多
关键词 ionic liquid ETHANOL flotation foam SOLVATION dynamic surface tension
下载PDF
Machine learning models for the density and heat capacity of ionic liquid-water binary mixtures
14
作者 Yingxue Fu Xinyan Liu +3 位作者 Jingzi Gao Yang Lei Yuqiu Chen Xiangping Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期244-255,共12页
Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity an... Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity and synthesis cost limits their application,the hybrid solvent which combining ILs together with others especially water can solve this problem.Compared with the pure IL systems,the study of the ILs-H_(2)O binary system is rare,and the experimental data of corresponding thermodynamic properties(such as density,heat capacity,etc.)are less.Moreover,it is also difficult to obtain all the data through experiments.Therefore,this work establishes a predicted model on ILs-water binary systems based on the group contribution(GC)method.Three different machine learning algorithms(ANN,XGBoost,LightBGM)are applied to fit the density and heat capacity of ILs-water binary systems.And then the three models are compared by two index of MAE and R^(2).The results show that the ANN-GC model has the best prediction effect on the density and heat capacity of ionic liquid-water mixed system.Furthermore,the Shapley additive explanations(SHAP)method is harnessed to scrutinize the significance of each structure and parameter within the ANN-GC model in relation to prediction outcomes.The results reveal that system components(XIL)within the ILs-H_(2)O binary system exert the most substantial influence on density,while for the heat capacity,the substituents on the cation exhibit the greatest impact.This study not only introduces a robust prediction model for the density and heat capacity properties of IL-H_(2)O binary mixtures but also provides insight into the influence of mixture features on its density and heat capacity. 展开更多
关键词 ionic liquids DENSITY Heat capacity Group contribution method Machine learning
下载PDF
Highly selective extraction of aromatics from aliphatics by using metal chloride-based ionic liquids
15
作者 Hui Yu Xiaojia Wu +4 位作者 Chuanqi Geng Xinyu Li Chencan Du Zhiyong Zhou Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期222-229,共8页
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and... The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly. 展开更多
关键词 ionic liquid Aromatic hydrocarbon Aliphatic hydrocarbon Extraction
下载PDF
Effects of ionic liquids on the vapor-liquid equilibrium of 1,3,5-trioxane-water system at 101.3 kPa
16
作者 Fei Li Tao Zhang +3 位作者 Li Lv Wenxiang Tang Yan Wang Shengwei Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期42-50,共9页
Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatili... Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatility of TOX to H_(2)O and destroy the azeotrope in the TOX-H2O system. The vapor-liquid equilibrium of TOX-H2O system at 101.3 kPa was studied with the addition of 1-butyl-3-methylimidazolium hydrogen sulfate, 1-hexyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium nitrate, respectively. The results showed that the volatility of TOX increased with the increase in IL dosage. And the volatility of water decreased with the increase in IL dosage. The relative volatility of TOX to H_(2)O was improved with the increase in ILs dosage. The azeotrope could be destroyed with an IL mole fraction of about 0.10. A non-random two-liquid(NRTL) model was successfully used to correlate the experimental data. The interaction parameters were obtained by fitting the experimental data with the model. The results indicated that a strong interaction existed between ILs and water. The strong interaction improved the volatility of TOX and inhibited the volatility of water, and then intensified the relative volatility of TOX to H_(2)O. The results showed that an ILs with strong polarity and hydrophilicity may be a potential additive to improve the TOX concentration in the equilibrated vapor phase. 展开更多
关键词 1 3 5-Trioxane Vaporeliquid equilibrium ionic liquids NRTL model
下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
17
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
A Review on Soft Ionic Touch Point Sensors
18
作者 Gibeom Lee Donghyun Lee +1 位作者 Gwang-Bum Im Younghoon Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期193-208,共16页
A touch sensor is an essential component in meeting the growing demand for human-machine interfaces.These sensors have been developed in wearable,attachable,and even implantable forms to acquire a wide range of inform... A touch sensor is an essential component in meeting the growing demand for human-machine interfaces.These sensors have been developed in wearable,attachable,and even implantable forms to acquire a wide range of information from humans.To be applied to the human body,sensors are required to be biocompatible and not restrict the natural movement of the body.Ionic materials are a promising candidate for soft touch sensors due to their outstanding properties,which include high stretchability,transparency,ionic conductivity,and biocompatibility.Here,this review discusses the unique features of soft ionic touch point sensors,focusing on the ionic material and its key role in the sensor.The touch sensing mechanisms include piezocapacitive,piezoresistive,surface capacitive,piezoelectric,and triboelectric and triboresistive sensing.This review analyzes the implementation hurdles and future research directions of the soft ionic touch sensors for their transformative potential. 展开更多
关键词 iontronics ionic materials soft materials touch sensors
下载PDF
Interfacial friction induced capillary flow within nanofiber-supported ionic liquid droplets
19
作者 Yuanyuan Zhao Gang Xia +1 位作者 Yintung Lam John Haozhong Xin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期789-791,共3页
As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel co... As global economic growth increases,the demand for energy sources boosts.While fossil fuels have traditionally satisfied this demand,their environmental influence and limited reserves require alternatives.Fossil fuel combustion contributes substantially to greenhouse gas emissions,with a pressing need to halve these emissions by 2030 and target net-zero by 2050.Renewable energy sources,contributing currently to 29%of global electricity,are viewed as promising substitutes.With wind energy's potential,Zheng's team developed a novel method to harness even low wind speeds using well-aligned nanofibers and an innovative“drop wind generator”.This system,combining moisture-saturated ionic liquid 3-Methyl-1-octylimidazolium chloride with specific nanofiber arrays,exploits wind-inducedflows for energy conversion.This study highlights the vast untapped potential of low-speed wind as a sustainable energy source potentially for electronics. 展开更多
关键词 Wind energy Low-speed wind ionic liquid Electronic devices
下载PDF
Ionically Imprinting-Based Copper(Ⅱ)Label-Free Detection for Preventing Hearing Loss
20
作者 Huan Wang Hui Zhang +3 位作者 Xiaoli Zhang Hong Chen Ling Lu Renjie Chai 《Engineering》 SCIE EI CAS CSCD 2024年第2期276-282,共7页
Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,t... Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss. 展开更多
关键词 Structural color Microfluidics ionic imprinting Label-free detection Hearing loss
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部