In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lackof performance of each component, such as computing resources like CPUs and batteries, to encrypt and d...In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lackof performance of each component, such as computing resources like CPUs and batteries, to encrypt and decryptdata. Because IoT is applied and utilized in many important fields, a cyberattack on IoT can result in astronomicalfinancial and human casualties. For this reason, the application of encrypted communication to IoT has beenrequired, and the application of encrypted communication to IoT has become possible due to improvements inthe computing performance of IoT devices and the development of lightweight cryptography. The applicationof encrypted communication in IoT has made it possible to use encrypted communication channels to launchcyberattacks. The approach of extracting evidence of an attack based on the primary information of a networkpacket is no longer valid because critical information, such as the payload in a network packet, is encrypted byencrypted communication. For this reason, technology that can detect cyberattacks over encrypted network trafficoccurring in IoT environments is required. Therefore, this research proposes an encrypted cyberattack detectionsystem for the IoT (ECDS-IoT) that derives valid features for cyberattack detection from the cryptographic networktraffic generated in the IoT environment and performs cyberattack detection based on the derived features. ECDSIoT identifies identifiable information from encrypted traffic collected in IoT environments and extracts statisticsbased features through statistical analysis of identifiable information. ECDS-IoT understands information aboutnormal data by learning only statistical features extracted from normal data. ECDS-IoT detects cyberattacks basedonly on the normal data information it has trained. To evaluate the cyberattack detection performance of theproposed ECDS-IoT in this research, ECDS-IoT used CICIoT2023, a dataset containing encrypted traffic generatedby normal and seven categories of cyberattacks in the IoT environment and experimented with cyberattackdetection on encrypted traffic using Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM algorithms. Asa result of evaluating the performance of cyberattack detection for encrypted traffic, ECDS-IoT achieved highperformance such as accuracy 0.99739, precision 0.99154, recall 1.0, F1 score 0.99575, and ROC_AUC 0.99822when using the AE-LSTM algorithm. As shown by the cyberattack detection results of ECDS-IoT, it is possibleto detect most cyberattacks through encrypted traffic. By applying ECDS-IoT to IoT, it can effectively detectcyberattacks concealed in encrypted traffic, promoting the efficient operation of IoT and preventing financial andhuman damage caused by cyberattacks.展开更多
Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol...Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.展开更多
城市地下管廊内布设了大量的管线,如燃气管道、网络通讯线路、电力线路等,由于地下环境复杂多变,存在着气体泄漏、爆炸、火灾等安全风险。针对这些问题,提出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的地下管廊...城市地下管廊内布设了大量的管线,如燃气管道、网络通讯线路、电力线路等,由于地下环境复杂多变,存在着气体泄漏、爆炸、火灾等安全风险。针对这些问题,提出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的地下管廊环境监测系统。该系统采用先进的传感器技术、NB-IoT技术、软件技术,系统主要分为数据采集模块、物联网云平台、远程监测系统三部分。数据采集模块以STM32作为主控单元连接各个传感器,采集温度、湿度、水位、可燃气体等数据,经过处理后利用NB-IoT网络上传到物联网云平台,远程监测系统调用物联网云平台的数据接口进行远程显示与预警。实验结果表明,系统在降低系统总体功耗的同时,能够实时、稳定地进行地下管廊环境监测,提前预防可能存在的风险。展开更多
As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an ...As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.展开更多
随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖...随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖不均等挑战。这些挑战不仅影响用户体验,还限制了物联网应用的进一步发展。因此,研究面向物联网的NB-IoT信号优化方法具有重要意义。文章深入研究面向物联网的NB-IoT信号优化方法,提出多种有效的优化策略和技术手段。展开更多
探讨物联网(Internet of Things,IoT)领域的两大关键技术,即窄带物联网(Narrow Band Internet of Things,NB-IoT)和增强型机器类型通信(enhanced Machine-Type Communication,eMTC),分析它们在不同应用场景下的实际应用和面临的挑战。...探讨物联网(Internet of Things,IoT)领域的两大关键技术,即窄带物联网(Narrow Band Internet of Things,NB-IoT)和增强型机器类型通信(enhanced Machine-Type Communication,eMTC),分析它们在不同应用场景下的实际应用和面临的挑战。详细介绍基于NB-IoT的智慧水表系统和基于eMTC的车辆跟踪系统的设计与实现,展示这些系统在提高城市管理效率、物流监控等方面的积极作用。针对网络覆盖与信号质量、数据安全与隐私保护、功耗与续航等关键技术挑战,提出相应的解决方案。最后总结NB-IoT和eMTC的广阔应用前景和市场潜力,并对未来技术发展和应用趋势进行展望。展开更多
基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution an...基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution and knowledge base,MAPE-K)模型思想,将IoT对象实例生命周期的行为状态与微流程实例状态一一映射,实现对单个IoT对象的环形自动监控和调节;其次,基于从IoT传感设备获取的数据,定义基于SASE+语言的业务规则,提取对业务流程有意义的业务事件,避免了无关事件对宏流程的干扰;最后,通过设计一个微流程建模工具原型系统,结合真实案例分析,验证了提出建模方法的有效性,实现了业务流程与IoT实时流式感知数据的结合,并显著减少了宏流程需要处理的业务事件数量。展开更多
NB-IoT(Narrow Band Internet of Things)是基于蜂窝窄带物联网的一种新兴技术,是物联网的一个重要分支。随着NB-IoT终端设备的规模不断增大,物联网安全面临数据泄露、中间人攻击等安全威胁。本论文针对NB-IoT技术的数据安全传输研究,...NB-IoT(Narrow Band Internet of Things)是基于蜂窝窄带物联网的一种新兴技术,是物联网的一个重要分支。随着NB-IoT终端设备的规模不断增大,物联网安全面临数据泄露、中间人攻击等安全威胁。本论文针对NB-IoT技术的数据安全传输研究,从物联网终端安全和应用服务安全两方面进行分析,结合密码技术给出了NB-IoT系统安全模型,提出了基于物联网应用层数据信源加密传输机制,给出了轻量级身份认证协议和数据加密传输协议,论证了该方案的安全性,通过实验验证了所提方案的可行性和适用性。展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ...A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.展开更多
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-00493,5G Massive Next Generation Cyber Attack Deception Technology Development).
文摘In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lackof performance of each component, such as computing resources like CPUs and batteries, to encrypt and decryptdata. Because IoT is applied and utilized in many important fields, a cyberattack on IoT can result in astronomicalfinancial and human casualties. For this reason, the application of encrypted communication to IoT has beenrequired, and the application of encrypted communication to IoT has become possible due to improvements inthe computing performance of IoT devices and the development of lightweight cryptography. The applicationof encrypted communication in IoT has made it possible to use encrypted communication channels to launchcyberattacks. The approach of extracting evidence of an attack based on the primary information of a networkpacket is no longer valid because critical information, such as the payload in a network packet, is encrypted byencrypted communication. For this reason, technology that can detect cyberattacks over encrypted network trafficoccurring in IoT environments is required. Therefore, this research proposes an encrypted cyberattack detectionsystem for the IoT (ECDS-IoT) that derives valid features for cyberattack detection from the cryptographic networktraffic generated in the IoT environment and performs cyberattack detection based on the derived features. ECDSIoT identifies identifiable information from encrypted traffic collected in IoT environments and extracts statisticsbased features through statistical analysis of identifiable information. ECDS-IoT understands information aboutnormal data by learning only statistical features extracted from normal data. ECDS-IoT detects cyberattacks basedonly on the normal data information it has trained. To evaluate the cyberattack detection performance of theproposed ECDS-IoT in this research, ECDS-IoT used CICIoT2023, a dataset containing encrypted traffic generatedby normal and seven categories of cyberattacks in the IoT environment and experimented with cyberattackdetection on encrypted traffic using Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM algorithms. Asa result of evaluating the performance of cyberattack detection for encrypted traffic, ECDS-IoT achieved highperformance such as accuracy 0.99739, precision 0.99154, recall 1.0, F1 score 0.99575, and ROC_AUC 0.99822when using the AE-LSTM algorithm. As shown by the cyberattack detection results of ECDS-IoT, it is possibleto detect most cyberattacks through encrypted traffic. By applying ECDS-IoT to IoT, it can effectively detectcyberattacks concealed in encrypted traffic, promoting the efficient operation of IoT and preventing financial andhuman damage caused by cyberattacks.
文摘Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.
文摘城市地下管廊内布设了大量的管线,如燃气管道、网络通讯线路、电力线路等,由于地下环境复杂多变,存在着气体泄漏、爆炸、火灾等安全风险。针对这些问题,提出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的地下管廊环境监测系统。该系统采用先进的传感器技术、NB-IoT技术、软件技术,系统主要分为数据采集模块、物联网云平台、远程监测系统三部分。数据采集模块以STM32作为主控单元连接各个传感器,采集温度、湿度、水位、可燃气体等数据,经过处理后利用NB-IoT网络上传到物联网云平台,远程监测系统调用物联网云平台的数据接口进行远程显示与预警。实验结果表明,系统在降低系统总体功耗的同时,能够实时、稳定地进行地下管廊环境监测,提前预防可能存在的风险。
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU241648.
文摘As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.
文摘随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖不均等挑战。这些挑战不仅影响用户体验,还限制了物联网应用的进一步发展。因此,研究面向物联网的NB-IoT信号优化方法具有重要意义。文章深入研究面向物联网的NB-IoT信号优化方法,提出多种有效的优化策略和技术手段。
文摘探讨物联网(Internet of Things,IoT)领域的两大关键技术,即窄带物联网(Narrow Band Internet of Things,NB-IoT)和增强型机器类型通信(enhanced Machine-Type Communication,eMTC),分析它们在不同应用场景下的实际应用和面临的挑战。详细介绍基于NB-IoT的智慧水表系统和基于eMTC的车辆跟踪系统的设计与实现,展示这些系统在提高城市管理效率、物流监控等方面的积极作用。针对网络覆盖与信号质量、数据安全与隐私保护、功耗与续航等关键技术挑战,提出相应的解决方案。最后总结NB-IoT和eMTC的广阔应用前景和市场潜力,并对未来技术发展和应用趋势进行展望。
文摘基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution and knowledge base,MAPE-K)模型思想,将IoT对象实例生命周期的行为状态与微流程实例状态一一映射,实现对单个IoT对象的环形自动监控和调节;其次,基于从IoT传感设备获取的数据,定义基于SASE+语言的业务规则,提取对业务流程有意义的业务事件,避免了无关事件对宏流程的干扰;最后,通过设计一个微流程建模工具原型系统,结合真实案例分析,验证了提出建模方法的有效性,实现了业务流程与IoT实时流式感知数据的结合,并显著减少了宏流程需要处理的业务事件数量。
文摘NB-IoT(Narrow Band Internet of Things)是基于蜂窝窄带物联网的一种新兴技术,是物联网的一个重要分支。随着NB-IoT终端设备的规模不断增大,物联网安全面临数据泄露、中间人攻击等安全威胁。本论文针对NB-IoT技术的数据安全传输研究,从物联网终端安全和应用服务安全两方面进行分析,结合密码技术给出了NB-IoT系统安全模型,提出了基于物联网应用层数据信源加密传输机制,给出了轻量级身份认证协议和数据加密传输协议,论证了该方案的安全性,通过实验验证了所提方案的可行性和适用性。
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
文摘A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.