The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electroche...The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.展开更多
Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxid...Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.展开更多
SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermo...SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermore,ZrO_(2)coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film.As a result,the redox polarization was reduced,and the reversibility of the electrochemical reaction was enhanced.Particularly,SLTO-ZrO_(2)-2 sample delivers a high initial lithiation capacity of 283.6 mA h g^(-1),and the values maintain at 251.7,228.0,207.4,175.3,and 147.7 mA h g^(-1)at the current densities of 0.13,0.26,0.54,1.31,and 2.62 A g^(-1),respectively.Our experiment also confirmed that SLTO materials coated with ZrO_(2)are suitable for high power density applications,and the lithiation specific energy efficiency of SLTO-ZrO_(2)-2 is 200%as high as that of pure SLTO at a power density of 1257 W kg^(-1).展开更多
Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dend...Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices.展开更多
Bismuth sulfide(Bi_(2)S_(3))has attracted particular interest as a potential anode material for sodium-ion batteries(SIBs).However,the low electrical conductivity and dramatic volumetric change greatly restrict its pr...Bismuth sulfide(Bi_(2)S_(3))has attracted particular interest as a potential anode material for sodium-ion batteries(SIBs).However,the low electrical conductivity and dramatic volumetric change greatly restrict its practical applications.In view of the apparent structural and compositional advantages of metal-organic frameworks(MOFs)derived carbon-based composite,herein,as a proof of concept,Bi_(2)S_(3) spheres coated with the MOF-derived Co_(9)S_(8) and N-doped carbon composite layer(Bi_(2)S_(3)@Co_(9)S_(8)/NC composite spheres)have been rational designed and synthesized.As expected,the core-shell Bi_(2)S_(3)@Co_(9)S_(8)/NC composite spheres exhibit remarkable electrochemical performance in terms of high reversible capacity(597 m Ah g^(-1) after 100 cycles at 0.1 A g^(-1)),good rate capability(341 m Ah g^(-1) at 8 A g^(-1))and long-term cycling stability(458 m Ah g^(-1) after 1000 cycles at 1 A g^(-1))when investigated as anode materials for SIBs.Electrochemical analyses further reveal the favorable reaction kinetics in the Bi_(2)S_(3)@Co_(9)S_(8)/NC composite spheres.In addition,the possible sodium storage mechanism has been studied by ex-situ X-ray diffraction technique.More importantly,a sodium-ion full cell based on Na_(3) V_(2)(PO_(4))_(3)/r GO as cathode and Bi_(2)S_(3)@Co_(9)S_(8)/NC as anode is also fabricated,suggesting their potential for practical applications.It is anticipated that the present work could be extended to construct other advanced electrode materials using MOFs-derived carbon-based composites as surface coating materials for various energy storagerelated applications.展开更多
Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrother...Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrothermal-electrochemicalmethod at a constant current.The obtained films and coatings were characterized by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fourier-transform infrared spectrometry.The microstructures of the porous films on the Ti6Al4 V substrates were studied to investigate the effect of the anodizing voltage on the phase and morphology of the HATiO_2 coating.The results indicated that both the phase composition and the morphology of the coatings were significantly influenced by changes in the anodizing voltage.HA-TiO_2 was directly precipitated onto the surface of the substrate when the applied voltage was between 110 and 140 V.The coatings had a gradient structure and the HA exhibited both needle-like and cotton-like structures.The amount of cotton-like HA structures decreased with an increase in voltage from 90 to 120 V,and then increased slightly when the voltage was higher than 120 V.The orientation index of the(002)plane of the coating was at a minimum when the Ti6Al4 V substrate was pretreated at 120 V.展开更多
We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio ar...We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2OB@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (-99%), and good rate capability.展开更多
文摘The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.
基金supported by the National Natural Science Foundation of China(22075147 and 22179063)。
文摘Although metal oxide compounds are considered as desirable anode materials for potassium-ion batteries(PIBs)due to their high theoretical capacity,the large volume variation remains a key issue in realizing metal oxide anodes with long cycle life and excellent rate property.In this study,polypyrroleencapsulated Sb_(2)WO_(6)(denoted Sb_(2)WO_(6)@PPy)microflowers are synthesized by a one-step hydrothermal method followed by in-situ polymerization and coating by pyrrole.Leveraging the nanosheet-stacked Sb_(2)WO_(6)microflower structure,the improved electronic conductivity,and the architectural protection offered by the PPy coating,Sb_(2)WO_(6)@PPy exhibits boosted potassium storage properties,thereby demonstrating an outstanding rate property of 110.3 m A h g^(-1)at 5 A g^(-1)and delivering a long-period cycling stability with a reversible capacity of 197.2 m A h g^(-1)after 500 cycles at 1 A g^(-1).In addition,the conversion and alloying processes of Sb_(2)WO_(6)@PPy in PIBs with the generation of intermediates,K_(2)WO_(4)and K_(3)Sb,is determined by X-ray photoelectron spectroscopy,transmission electron microscopy,and exsitu X-ray diffraction during potassiation/depotassiation.Density functional theory calculations demonstrate that the robust coupling between PPy and Sb_(2)WO_(6)endues it with a much stronger total density of states and a built-in electric field,thereby increasing the electronic conductivity,and thus effectively reduces the K^(+)diffusion barrier.
基金financially supported by the National Natural Science Foundation of China(nos.21773060,51774002,and 21601054)Fundamental Research Funds for the Central Universities(no.N182304014)+1 种基金Youth Innovation Team Project of Science and technology of Heilongjiang University(2018-KYYWF-1593)Young Scholar Project of the Long Jiang Scholars Program(Q201818)
文摘SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermore,ZrO_(2)coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film.As a result,the redox polarization was reduced,and the reversibility of the electrochemical reaction was enhanced.Particularly,SLTO-ZrO_(2)-2 sample delivers a high initial lithiation capacity of 283.6 mA h g^(-1),and the values maintain at 251.7,228.0,207.4,175.3,and 147.7 mA h g^(-1)at the current densities of 0.13,0.26,0.54,1.31,and 2.62 A g^(-1),respectively.Our experiment also confirmed that SLTO materials coated with ZrO_(2)are suitable for high power density applications,and the lithiation specific energy efficiency of SLTO-ZrO_(2)-2 is 200%as high as that of pure SLTO at a power density of 1257 W kg^(-1).
基金funding support from the National Natural Science Foundation of China (21905151 and 51772162)the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (2019KJC004)+1 种基金the Outstanding Youth Foundation of Shandong Province, China (ZR2019JQ14)the Taishan Scholar Young Talent Program, Major Scientific and Technological Innovation Project (2019JZZY020405)。
文摘Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices.
基金the financial support from the Central Government Research Programs to Guide the Local Scientific and Technological Development(Grant no.2018L3001)the National Natural Science Foundation of China(Grant nos.51872048 and U1732155)the Natural Science Foundation of Fujian Province,China(Grant no.2018J01677)。
文摘Bismuth sulfide(Bi_(2)S_(3))has attracted particular interest as a potential anode material for sodium-ion batteries(SIBs).However,the low electrical conductivity and dramatic volumetric change greatly restrict its practical applications.In view of the apparent structural and compositional advantages of metal-organic frameworks(MOFs)derived carbon-based composite,herein,as a proof of concept,Bi_(2)S_(3) spheres coated with the MOF-derived Co_(9)S_(8) and N-doped carbon composite layer(Bi_(2)S_(3)@Co_(9)S_(8)/NC composite spheres)have been rational designed and synthesized.As expected,the core-shell Bi_(2)S_(3)@Co_(9)S_(8)/NC composite spheres exhibit remarkable electrochemical performance in terms of high reversible capacity(597 m Ah g^(-1) after 100 cycles at 0.1 A g^(-1)),good rate capability(341 m Ah g^(-1) at 8 A g^(-1))and long-term cycling stability(458 m Ah g^(-1) after 1000 cycles at 1 A g^(-1))when investigated as anode materials for SIBs.Electrochemical analyses further reveal the favorable reaction kinetics in the Bi_(2)S_(3)@Co_(9)S_(8)/NC composite spheres.In addition,the possible sodium storage mechanism has been studied by ex-situ X-ray diffraction technique.More importantly,a sodium-ion full cell based on Na_(3) V_(2)(PO_(4))_(3)/r GO as cathode and Bi_(2)S_(3)@Co_(9)S_(8)/NC as anode is also fabricated,suggesting their potential for practical applications.It is anticipated that the present work could be extended to construct other advanced electrode materials using MOFs-derived carbon-based composites as surface coating materials for various energy storagerelated applications.
基金Funded in part by the Key Laboratory of Inorginic Coating MaterialsChinese Academy of Sciences(No.KLICM-2014-11)the Shanghai Municipal Natural Science Foundation Sponsored by Shanghai Municipal Science and Technology Commissions(No.15ZR1428300)
文摘Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrothermal-electrochemicalmethod at a constant current.The obtained films and coatings were characterized by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fourier-transform infrared spectrometry.The microstructures of the porous films on the Ti6Al4 V substrates were studied to investigate the effect of the anodizing voltage on the phase and morphology of the HATiO_2 coating.The results indicated that both the phase composition and the morphology of the coatings were significantly influenced by changes in the anodizing voltage.HA-TiO_2 was directly precipitated onto the surface of the substrate when the applied voltage was between 110 and 140 V.The coatings had a gradient structure and the HA exhibited both needle-like and cotton-like structures.The amount of cotton-like HA structures decreased with an increase in voltage from 90 to 120 V,and then increased slightly when the voltage was higher than 120 V.The orientation index of the(002)plane of the coating was at a minimum when the Ti6Al4 V substrate was pretreated at 120 V.
文摘We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2OB@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (-99%), and good rate capability.