The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electroche...The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.展开更多
文摘The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.