Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated ...Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.展开更多
A facile and rapid approach for detecting low concentration of iron ion(Fe3+) with improved sensitivity was developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching.Au1...A facile and rapid approach for detecting low concentration of iron ion(Fe3+) with improved sensitivity was developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching.Au1Ag4@Si O2 nanoparticles were synthesized and dispersed into fluorescein isothiocyanate(FITC) solution. The fluorescence of the FITC solution was improved due to plasmon enhanced fluorescence. However, efficient fluorescence quenching of the FITC/Au1Ag4@Si O2 solution was subsequently achieved when Fe3+, with a concentration ranging from17 n M to 3.4 l M, was added into the FITC/Au1Ag4@Si O2 solution, whereas almost no fluorescence quenching was observed for pure FITC solution under the same condition. FITC/Au1Ag4@Si O2 solution shows a better sensitivity for detecting low concentration of Fe3+compared to pure FITC solution. The quantized limit of detection toward Fe3+was improved from 4.6 l M for pure FITC solution to 20 n M for FITC/Au1Ag4@Si O2 solution.展开更多
Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon fel...Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon felt using chemical method and a composite modified anode was prepared through organic ligands coordination Fe^(3+)for better electro-chemical per-formance.Results show that the biofilm resistance of the composite modified anode(2707Ω)is 1.3 times greater than that of the unmodified anode(2100Ω),and its biofilm capacitance also increases by 2.2 times,indicating that the composite modification pro-motes the growth and attachment of electroactive bacteria on the anode.Its specific capacitance(887.8 Fm^(−2))is 3.7 times higher than that of unmodified anode,generating a maximum current density of 1.5Am^(−2).In their Tafel curves,the composite modified anodic exchange current density(5.25×10^(−6)Acm^(−2))is 5.8 times bigger than that of unmodified anode,which suggests that the electro-chemical activity of redox,anti-polarization ability and electron transfer kinetic activity are significantly enhanced.The marine sediment microbial fuel cell with the composite modified anode generates the higher power densities than the blank(203.8mWm^(−2) versus 45.07mWm^(−2)),and its current also increases by 4.4 times.The free amino groups on the anode surface expands a creative idea that the modified anode ligates the natural Fe(Ⅲ)ion in sea water in the MSMFCs for its higher power output.展开更多
A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability ofphycocyanin (PC) of Spirulina maxima showed that iron ions prevent decrease of visible light absorbanceand fluorescence intensity of P...A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability ofphycocyanin (PC) of Spirulina maxima showed that iron ions prevent decrease of visible light absorbanceand fluorescence intensity of PC. Increase in denaturation temperature caused by Fe3+ was observed bythe micro - differential scanning calorimetric method. All results showed iron ions maintain the aggrega-tion stability of the PC. The absorption spectrum of phycocyanobilin (PCB, a prosthetic group of PC) withFe3+ in chloroform was quite different from that of free PCB.展开更多
Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) grou...Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) groups: the first—Al-tolerant varieties, the second—Al-sensitive ones and third—moderately resistant variety. The increased concentration of Fe had practically no effect on biometric (seed germination energy) and cytogenetics (frequency of chromosome aberrations and mitotic index) parameters as compared to the reference values. At the same time, iron ion significantly reduces the phytotoxic effect for Al-tolerant varieties in case of these elements jointly presented in solution.展开更多
In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions o...In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions of removing such as contact time, pH, initial concentration, a dosage of adsorbent, agitation speed and temperature. Kinetics studies included first order (R2 = 0.915), pseudo-first order (R2 = 0.936), second order (R2 = 0.948), pseudo-second order (R2 = 0.995), Elovich equation model (R2 = 0.977), intraparticle diffusion (R2 = 0.946), Natarajan and Khalaf (R2 = 0.915) were carried out, the obtained results revealed that the pseudo-second order is the best to describe the adsorption process because the correlation coefficient is approaching one (R2 = 0.995). Adsorption isotherm was calculated by using Freundlich, Langmuir and Temkin constants, adsorption capacity from Langmuir model was 0.606 mg/g. Thermodynamic parameters (ΔG, ΔH = ?51 KJ/mol, and ΔS = ?142 (KJ/mol)) for the adsorption process were also calculated and discussed.展开更多
The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0...The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0.2)-O_(x)H_(y)) was developed through topotactic transformation of a Prussian blue analogue in an alkaline solution,which exhibits a low overpotential of only 263 mV to reach a current density of 10 mA cm^(-2) and a small Tafel slope of 35 mV dec-1.Ex-situ/operando Raman spectroscopy results indicated that the phase structure of NiFe_(0.2)-O_(x)H_(y) was irreversibly transformed from the type of α-Ni(OH)_(2) to γ-NiOOH with applying an anodic potential,while ex-situ/operando 57Fe Mossbauer spectroscopic studies evidenced the in-situ production of abundant high-valent iron species under OER conditions,which effectively promoted the OER catalysis.Our work elucidates that the amount of high-valent iron species in-situ produced in the NiFe(oxy)hydroxide has a positive correlation with its water oxidation reaction performance,which further deepens the understanding of the mechanism of NiFe-based electrocatalysts.展开更多
5-Aminolevulinic acid(5-ALA)has been approved for clinical photodynamic therapy(PDT)due to its negligible photosensitive toxicity.However,the curative effect of 5-ALA is restricted by intracellular biotransformation i...5-Aminolevulinic acid(5-ALA)has been approved for clinical photodynamic therapy(PDT)due to its negligible photosensitive toxicity.However,the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells.Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair,a liposomal nanomedicine(MFLs@5-ALA/DFO)with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA,which was prepared by co-encapsulating 5-ALA and DFO(deferoxamine,a special iron chelator)into the membrane fusion liposomes(MFLs).MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery.MFLs@5-ALA/DFO could efficiently reduce iron ion,thus blocking the biotransformation of photosensitive protoporphyrin IX(Pp IX)to heme,realizing significant accumulation of photosensitivity.Meanwhile,the activity of DNA repair enzyme was also inhibited with the reduction of iron ion,resulting in the aggravated DNA damage in tumor cells.Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.展开更多
The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affect...The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.展开更多
The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at dif...The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at different redox or COD (chemical oxygen demand) conditions and their influential factors were given necessary explanations. The results reveal that the Fe^(3+)-O-Fe^(2+) structure is the real tinting reason of iron involved glasses, whereas the Si^(4+)-O-Fe^(3+) and Si^(4+)-O-Fe^(2+) formulations modify the glass colours. Under oxidizing melting condition, the amount of 4/6-coordinated Fe^(3+) increases and makes the glass colour yellowish. Conversely, reducing melting condition makes the 6-coordinated Fe^(2+) increased and gives much blue tint to the glass. The conventional tank furnace melting the very strong reducing condition, which is of high COD glass batch, is not suitable. The high ratio of ferrous/ferric in glass can be obtained with a new refining technology which contains no or little amount of refining agent.展开更多
Various molecular docking software packages are available for modeling interactions between small molecules and proteins.However,there have been few reports of modeling the interactions between metal ions and metallop...Various molecular docking software packages are available for modeling interactions between small molecules and proteins.However,there have been few reports of modeling the interactions between metal ions and metalloproteins.In this study,the AutoDock package was employed to example docking into a di-iron binding protein,bacterioferritin.Each binding site of this protein was tested for docking with iron ions.Blind docking experiments showed that all docking conformations converged into two clusters,one for internal iron binding in sites within the metalloprotein and the other for external iron binding on the protein surface.Local docking experiments showed that there were significant differences between two internal iron binding sites.Docking at one site gave a reasonable root-mean-square deviation(RMSD) distribution with relatively low binding energy.Analysis of the binding mode quality for this site revealed that more than half of the docking conformations were categorized as having good binding geometry,while no good conformations were found for the other site.Further investigations indicated that coordinating water molecules contributed to the stability of binding geometries.This study provides an empirical approach towards the study of molecular docking in metalloproteins.展开更多
As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber mater...As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber material for the effective removal of iron and sulfate ions in batch as well as in column experiments. The adsorption behavior of iron ions, as well as sulfate ions was investigated by utilizing chitosan flakes as a natural adsorbent. The removal was studied using adsorbance measurements, SEM and SEM-EDX. The adsorption capacity of chitosan was determined at different times. The received adsorption capacities for iron ions were very promising with a maximum adsorption capacity of 85 mg/g and a rate of separation of 100%. The maximum adsorption capacity obtained for sulfate ions was 188.8 mg/g and a rate of 80%.展开更多
Hydrogen peroxide bleaching has been extensivelyused in high-yield pulp bleaching. Unfortunately,hydrogen peroxide can be decomposed underalkaline condition, especially when transition metalions exit. Experiments show...Hydrogen peroxide bleaching has been extensivelyused in high-yield pulp bleaching. Unfortunately,hydrogen peroxide can be decomposed underalkaline condition, especially when transition metalions exit. Experiments show that the valence oftransition metal ion is also responsible for thedecomposition of hydrogen peroxide.Iron ions are present in two oxidation states, Fe2+ andFe3+. They are both catalytically active to hydrogenperoxide decomposition. Because Fe3+ is brown, itcan affect the brightness of pulp directly, it can alsocombine with phenol, forming complexes which notonly are stable structures and are difficult to beremoved from pulp, but also significantly affect thebrightness of pulp because of their color.Sodium silicate and magnesium sulfate, when usedtogether, can greatly decrease hydrogen peroxidedecomposition. The optimum dosage of sodiumsilicate is about 0.1% (on solution) for Fe2~ and0.25% (on solution) for Fe3~. Adding chelants such asDTPA or EDTA with stabilizers simultaneously canobviously improve pulp brightness. For iron ions, thechelate effect of DTPA is better than that of EDTA.Under acidic conditions, sodium hyposulfite andcellulose can reduce Fe3+ to Fez+ effectively, and pulpbrightness is improved greatly. Adding sodiumthiosulfate simultaneously with magnesium sulfate,sodium silicate, and DTPA to alkaline peroxidesolution can result in higher brightness of pulp.pH is a key parameter during hydrogen peroxidebleaching, the optimum pH value should be 10.5-12.展开更多
A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobal...A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.展开更多
It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help asses...It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between cell proliferation and intracellular iron concentrations suggest that iron deprivation strategies may be a mechanism involved in inhibiting tumor cell growth. With the creation of iron (III) phen complexes, the iron binding abilities of three polypyridal ligands [1,10-phenanthroline (phen), 2,9-dimethyl-1, 10-phenanthroline (methylphen), and 2,9-di-sec-butyl-1, 10-phenanthroline (sec-butylphen)] can be tested via a competition reaction with a known iron chelator. Therefore, iron (III) complexes possessing all three ligands were synthesized. Initial mass spectrometric and infrared absorption data indicate that iron (III) tetrachloride complex ions with protonated phen ligands (RphenH+) were formed: [phenH][FeCl4], [methylphenH][FeCl4], [sec-butylphenH][FeCl4]. UV-vis spectroscopy was used to monitor the stability of the complex ions, and it was found that the sec-butylpheniron complex was more stable than the phen and methylphen analogues. This was based on the observation that free ligand was observed immediately upon the addition of EDTA to the [phenH][FeCl4] and [methylphenH] [FeCl4] complex ions.展开更多
Under far from equilibrium conditions, the formation mechanism of solid can be studied in terms of the dynamic scaling theory. The roughness and dynamic scaling behavior of the Fe-N thin films were studied by atomic f...Under far from equilibrium conditions, the formation mechanism of solid can be studied in terms of the dynamic scaling theory. The roughness and dynamic scaling behavior of the Fe-N thin films were studied by atomic force microscopy and grazing incidence X-ray scattering. The results indicate that the roughness of the surface increases with increasing sputtering time during the course of magnetron sputtering, and the surface exhibits a fractal characteristic. While the Fe-N films prepared by compound technology—combining magnetron sputtering with plasma based ion implantation are not in agreement with the fractal theory.展开更多
The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction ...The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.展开更多
文摘Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.
基金supported by the National Natural Science Foundation of China (51003069)Natural Science Foundation of Jiangsu Higher Education Institutions of China (10KJB430014)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A facile and rapid approach for detecting low concentration of iron ion(Fe3+) with improved sensitivity was developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching.Au1Ag4@Si O2 nanoparticles were synthesized and dispersed into fluorescein isothiocyanate(FITC) solution. The fluorescence of the FITC solution was improved due to plasmon enhanced fluorescence. However, efficient fluorescence quenching of the FITC/Au1Ag4@Si O2 solution was subsequently achieved when Fe3+, with a concentration ranging from17 n M to 3.4 l M, was added into the FITC/Au1Ag4@Si O2 solution, whereas almost no fluorescence quenching was observed for pure FITC solution under the same condition. FITC/Au1Ag4@Si O2 solution shows a better sensitivity for detecting low concentration of Fe3+compared to pure FITC solution. The quantized limit of detection toward Fe3+was improved from 4.6 l M for pure FITC solution to 20 n M for FITC/Au1Ag4@Si O2 solution.
基金This work was supported by the National Natural Sci-ence Foundation of China(No.22075262).
文摘Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon felt using chemical method and a composite modified anode was prepared through organic ligands coordination Fe^(3+)for better electro-chemical per-formance.Results show that the biofilm resistance of the composite modified anode(2707Ω)is 1.3 times greater than that of the unmodified anode(2100Ω),and its biofilm capacitance also increases by 2.2 times,indicating that the composite modification pro-motes the growth and attachment of electroactive bacteria on the anode.Its specific capacitance(887.8 Fm^(−2))is 3.7 times higher than that of unmodified anode,generating a maximum current density of 1.5Am^(−2).In their Tafel curves,the composite modified anodic exchange current density(5.25×10^(−6)Acm^(−2))is 5.8 times bigger than that of unmodified anode,which suggests that the electro-chemical activity of redox,anti-polarization ability and electron transfer kinetic activity are significantly enhanced.The marine sediment microbial fuel cell with the composite modified anode generates the higher power densities than the blank(203.8mWm^(−2) versus 45.07mWm^(−2)),and its current also increases by 4.4 times.The free amino groups on the anode surface expands a creative idea that the modified anode ligates the natural Fe(Ⅲ)ion in sea water in the MSMFCs for its higher power output.
文摘A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability ofphycocyanin (PC) of Spirulina maxima showed that iron ions prevent decrease of visible light absorbanceand fluorescence intensity of PC. Increase in denaturation temperature caused by Fe3+ was observed bythe micro - differential scanning calorimetric method. All results showed iron ions maintain the aggrega-tion stability of the PC. The absorption spectrum of phycocyanobilin (PCB, a prosthetic group of PC) withFe3+ in chloroform was quite different from that of free PCB.
文摘Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) groups: the first—Al-tolerant varieties, the second—Al-sensitive ones and third—moderately resistant variety. The increased concentration of Fe had practically no effect on biometric (seed germination energy) and cytogenetics (frequency of chromosome aberrations and mitotic index) parameters as compared to the reference values. At the same time, iron ion significantly reduces the phytotoxic effect for Al-tolerant varieties in case of these elements jointly presented in solution.
文摘In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions of removing such as contact time, pH, initial concentration, a dosage of adsorbent, agitation speed and temperature. Kinetics studies included first order (R2 = 0.915), pseudo-first order (R2 = 0.936), second order (R2 = 0.948), pseudo-second order (R2 = 0.995), Elovich equation model (R2 = 0.977), intraparticle diffusion (R2 = 0.946), Natarajan and Khalaf (R2 = 0.915) were carried out, the obtained results revealed that the pseudo-second order is the best to describe the adsorption process because the correlation coefficient is approaching one (R2 = 0.995). Adsorption isotherm was calculated by using Freundlich, Langmuir and Temkin constants, adsorption capacity from Langmuir model was 0.606 mg/g. Thermodynamic parameters (ΔG, ΔH = ?51 KJ/mol, and ΔS = ?142 (KJ/mol)) for the adsorption process were also calculated and discussed.
基金financially supported by the National Natural Science Foundation of China(21476232,21961142006)the International Partnership Program of Chinese Academy of Sciences(121421KYSB20170020)the State Key Laboratory of Catalysis in Dalian Institute of Chemical Physics(N-16-07)。
文摘The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0.2)-O_(x)H_(y)) was developed through topotactic transformation of a Prussian blue analogue in an alkaline solution,which exhibits a low overpotential of only 263 mV to reach a current density of 10 mA cm^(-2) and a small Tafel slope of 35 mV dec-1.Ex-situ/operando Raman spectroscopy results indicated that the phase structure of NiFe_(0.2)-O_(x)H_(y) was irreversibly transformed from the type of α-Ni(OH)_(2) to γ-NiOOH with applying an anodic potential,while ex-situ/operando 57Fe Mossbauer spectroscopic studies evidenced the in-situ production of abundant high-valent iron species under OER conditions,which effectively promoted the OER catalysis.Our work elucidates that the amount of high-valent iron species in-situ produced in the NiFe(oxy)hydroxide has a positive correlation with its water oxidation reaction performance,which further deepens the understanding of the mechanism of NiFe-based electrocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.82073395,21904119 and 319009919)Innovation Talent Support Program of Henan Province(No.19HASTIT006,China)+1 种基金Key Scientific Research Projects,Education Department of Henan Province(No.20A350009,China)Key scientific research projects,Science and Technology Department of Henan Province(No.192102310147,China)。
文摘5-Aminolevulinic acid(5-ALA)has been approved for clinical photodynamic therapy(PDT)due to its negligible photosensitive toxicity.However,the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells.Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair,a liposomal nanomedicine(MFLs@5-ALA/DFO)with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA,which was prepared by co-encapsulating 5-ALA and DFO(deferoxamine,a special iron chelator)into the membrane fusion liposomes(MFLs).MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery.MFLs@5-ALA/DFO could efficiently reduce iron ion,thus blocking the biotransformation of photosensitive protoporphyrin IX(Pp IX)to heme,realizing significant accumulation of photosensitivity.Meanwhile,the activity of DNA repair enzyme was also inhibited with the reduction of iron ion,resulting in the aggravated DNA damage in tumor cells.Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.
基金Project(DY135-B2-15) supported by the China Ocean Mineral Resource R&D AssociationProject(2015ZX07205-003) supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026) supported by the National Natural Science Foundation of China
文摘The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.
文摘The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at different redox or COD (chemical oxygen demand) conditions and their influential factors were given necessary explanations. The results reveal that the Fe^(3+)-O-Fe^(2+) structure is the real tinting reason of iron involved glasses, whereas the Si^(4+)-O-Fe^(3+) and Si^(4+)-O-Fe^(2+) formulations modify the glass colours. Under oxidizing melting condition, the amount of 4/6-coordinated Fe^(3+) increases and makes the glass colour yellowish. Conversely, reducing melting condition makes the 6-coordinated Fe^(2+) increased and gives much blue tint to the glass. The conventional tank furnace melting the very strong reducing condition, which is of high COD glass batch, is not suitable. The high ratio of ferrous/ferric in glass can be obtained with a new refining technology which contains no or little amount of refining agent.
基金Project (No. 2011-II-010) supported by the Fundamental Research Funds for the Central Universities,China
文摘Various molecular docking software packages are available for modeling interactions between small molecules and proteins.However,there have been few reports of modeling the interactions between metal ions and metalloproteins.In this study,the AutoDock package was employed to example docking into a di-iron binding protein,bacterioferritin.Each binding site of this protein was tested for docking with iron ions.Blind docking experiments showed that all docking conformations converged into two clusters,one for internal iron binding in sites within the metalloprotein and the other for external iron binding on the protein surface.Local docking experiments showed that there were significant differences between two internal iron binding sites.Docking at one site gave a reasonable root-mean-square deviation(RMSD) distribution with relatively low binding energy.Analysis of the binding mode quality for this site revealed that more than half of the docking conformations were categorized as having good binding geometry,while no good conformations were found for the other site.Further investigations indicated that coordinating water molecules contributed to the stability of binding geometries.This study provides an empirical approach towards the study of molecular docking in metalloproteins.
文摘As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber material for the effective removal of iron and sulfate ions in batch as well as in column experiments. The adsorption behavior of iron ions, as well as sulfate ions was investigated by utilizing chitosan flakes as a natural adsorbent. The removal was studied using adsorbance measurements, SEM and SEM-EDX. The adsorption capacity of chitosan was determined at different times. The received adsorption capacities for iron ions were very promising with a maximum adsorption capacity of 85 mg/g and a rate of separation of 100%. The maximum adsorption capacity obtained for sulfate ions was 188.8 mg/g and a rate of 80%.
文摘Hydrogen peroxide bleaching has been extensivelyused in high-yield pulp bleaching. Unfortunately,hydrogen peroxide can be decomposed underalkaline condition, especially when transition metalions exit. Experiments show that the valence oftransition metal ion is also responsible for thedecomposition of hydrogen peroxide.Iron ions are present in two oxidation states, Fe2+ andFe3+. They are both catalytically active to hydrogenperoxide decomposition. Because Fe3+ is brown, itcan affect the brightness of pulp directly, it can alsocombine with phenol, forming complexes which notonly are stable structures and are difficult to beremoved from pulp, but also significantly affect thebrightness of pulp because of their color.Sodium silicate and magnesium sulfate, when usedtogether, can greatly decrease hydrogen peroxidedecomposition. The optimum dosage of sodiumsilicate is about 0.1% (on solution) for Fe2~ and0.25% (on solution) for Fe3~. Adding chelants such asDTPA or EDTA with stabilizers simultaneously canobviously improve pulp brightness. For iron ions, thechelate effect of DTPA is better than that of EDTA.Under acidic conditions, sodium hyposulfite andcellulose can reduce Fe3+ to Fez+ effectively, and pulpbrightness is improved greatly. Adding sodiumthiosulfate simultaneously with magnesium sulfate,sodium silicate, and DTPA to alkaline peroxidesolution can result in higher brightness of pulp.pH is a key parameter during hydrogen peroxidebleaching, the optimum pH value should be 10.5-12.
文摘A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.
文摘It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between cell proliferation and intracellular iron concentrations suggest that iron deprivation strategies may be a mechanism involved in inhibiting tumor cell growth. With the creation of iron (III) phen complexes, the iron binding abilities of three polypyridal ligands [1,10-phenanthroline (phen), 2,9-dimethyl-1, 10-phenanthroline (methylphen), and 2,9-di-sec-butyl-1, 10-phenanthroline (sec-butylphen)] can be tested via a competition reaction with a known iron chelator. Therefore, iron (III) complexes possessing all three ligands were synthesized. Initial mass spectrometric and infrared absorption data indicate that iron (III) tetrachloride complex ions with protonated phen ligands (RphenH+) were formed: [phenH][FeCl4], [methylphenH][FeCl4], [sec-butylphenH][FeCl4]. UV-vis spectroscopy was used to monitor the stability of the complex ions, and it was found that the sec-butylpheniron complex was more stable than the phen and methylphen analogues. This was based on the observation that free ligand was observed immediately upon the addition of EDTA to the [phenH][FeCl4] and [methylphenH] [FeCl4] complex ions.
文摘Under far from equilibrium conditions, the formation mechanism of solid can be studied in terms of the dynamic scaling theory. The roughness and dynamic scaling behavior of the Fe-N thin films were studied by atomic force microscopy and grazing incidence X-ray scattering. The results indicate that the roughness of the surface increases with increasing sputtering time during the course of magnetron sputtering, and the surface exhibits a fractal characteristic. While the Fe-N films prepared by compound technology—combining magnetron sputtering with plasma based ion implantation are not in agreement with the fractal theory.
基金Project(50621063) supported by the National Natural Science Foundation of ChinaProject(2010CB630903) supported by the National Basic Research Program of China
文摘The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.