The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluate...The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multi-fluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intra-particle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of high-reducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply highreducibility sinter and carbon composite agglomerates for practical application at a blast furnace.展开更多
Highly reactive iron coke hot briquette(ICHB)prepared by carbonizing the agglomerate of iron-bearing substance and blended coals is regarded as an alternative fuel to mitigate carbon emission and energy consumption of...Highly reactive iron coke hot briquette(ICHB)prepared by carbonizing the agglomerate of iron-bearing substance and blended coals is regarded as an alternative fuel to mitigate carbon emission and energy consumption of blast furnace.Simultaneously,the reduction process of iron-bearing burden is extremely crucial for blast furnace smelting.The effects of ICHB on the non-isothermal reduction process of iron-bearing burden with different reduction properties were thus experimentally studied under the conditions of simulated blast furnace lump zone(below 1100°C),and the related mechanism was discussed and analyzed.The results showed that the non-isothermal reduction process of iron-bearing burden is promoted by adding ICHB.As the charging ratio of ICHB is increased from 0%to 30%,the reduction degree of pellet is increased from 22.91%to 36.62%,but the increased amplitude is leveled off.Furthermore,the reduction degree of sinter is raised from 35.10%to 93.33%.It is also indicated that the promotion effect of ICHB on the non-isothermal reduction of iron-bearing burden depends on the reduction property of burden.Compared with the burden with poor reduction performance(such as pellet 1),the promotion is more significant for the burden with good reduction property(such as sinter 1)since the reduction reaction of iron oxide in iron-bearing burden and the gasification of carbon in ICHB are remarkably reinforced each other.The practical application of ICHB in blast furnace should be utilized with highly reductive iron-bearing burden.展开更多
文摘The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multi-fluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intra-particle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of high-reducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply highreducibility sinter and carbon composite agglomerates for practical application at a blast furnace.
基金supported by the National Natural Science Foundation of China-Liaoning Joint Funds(U1808212)the National Natural Science Foundation of China(52074080,52004001).
文摘Highly reactive iron coke hot briquette(ICHB)prepared by carbonizing the agglomerate of iron-bearing substance and blended coals is regarded as an alternative fuel to mitigate carbon emission and energy consumption of blast furnace.Simultaneously,the reduction process of iron-bearing burden is extremely crucial for blast furnace smelting.The effects of ICHB on the non-isothermal reduction process of iron-bearing burden with different reduction properties were thus experimentally studied under the conditions of simulated blast furnace lump zone(below 1100°C),and the related mechanism was discussed and analyzed.The results showed that the non-isothermal reduction process of iron-bearing burden is promoted by adding ICHB.As the charging ratio of ICHB is increased from 0%to 30%,the reduction degree of pellet is increased from 22.91%to 36.62%,but the increased amplitude is leveled off.Furthermore,the reduction degree of sinter is raised from 35.10%to 93.33%.It is also indicated that the promotion effect of ICHB on the non-isothermal reduction of iron-bearing burden depends on the reduction property of burden.Compared with the burden with poor reduction performance(such as pellet 1),the promotion is more significant for the burden with good reduction property(such as sinter 1)since the reduction reaction of iron oxide in iron-bearing burden and the gasification of carbon in ICHB are remarkably reinforced each other.The practical application of ICHB in blast furnace should be utilized with highly reductive iron-bearing burden.