期刊文献+
共找到525篇文章
< 1 2 27 >
每页显示 20 50 100
Fruit Yield and Quality, and Irrigation Water Use Efficiency of Summer Squash Drip-Irrigated with Different Irrigation Quantities in a Semi-Arid Agricultural Area 被引量:5
1
作者 Yasemin Kuslu Ustun Sahin +1 位作者 Fatih M Kiziloglu Selcuk Memis 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2518-2526,共9页
Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evalua... Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efifciency (IWUE) of summer squash responses to different irrigation quantities were evaluated with a ifeld study. Irrigations were done when the total evaporated water from a Class A pan was about 30 mm. Different irrigation quantities were adjusted using three different plant-pan coefifcients (Kcp, 100% (Kcp1), 85% (Kcp2) and 70% (Kcp3)). Results indicated that lower irrigation quantities provided statistically lower yield and yield components. The highest seasonal fruit yield (80.0 t ha-1) was determined in the Kcp1 treatment, which applied the highest volume of irrigation water (452.9 mm). The highest early fruit yield, average fruit weight and fruit diameter, length and number per plant were also determined in the Kcp1 treatment, with values of 7.25 t ha-1, 264.1 g, 5.49 cm, 19.95 cm and 10.92, respectively. Although the IWUE value was the highest in the Kcp1 treatment (176.6 kg ha-1 mm-1), it was statistically similar to the value for Kcp3 treatment (157.1 kg ha-1 mm-1). Total phenolic content and antioxidant activity of fruits was higher in the Kcp1 (44.27 μg gallic acid equivalents (GAE) mg-1 fresh sample) and in the Kcp2 (84.75%) treatments, respectively. Major (Na, N, P, K, Ca, Mg and S) and trace (Fe, Cu, Mn, Zn and B) mineral contents of squash fruits were the highest in the Kcp2 treatment, with the exception of P, Ca and Cu. Mineral contents and total phenolic content were signiifcantly affected by irrigation quantities, but antioxidant activity was not affected. It can be concluded that the Kcp1 treatment was the most suitable for achieving higher yield and IWUE. However, the Kcp2 treatment will be the most suitable due to the high fruit quality and relatively high yield in water shortage conditions. 展开更多
关键词 summer squash drip irrigation irrigation water use efifciency total phenolic content antioxidant activity fruit mineral content
下载PDF
Effects of Soil Water Content on Cotton Root Growth and Distribution Under Mulched Drip Irrigation 被引量:25
2
作者 HU Xiao-tang, CHEN Hu, WANG Jing, MENG Xiao-bin and CHEN Fu-hong Agricultural College, Shihezi University, Shihezi 832003, P.R.China 《Agricultural Sciences in China》 CSCD 2009年第6期709-716,共8页
The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil ... The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation. 展开更多
关键词 mulched drip irrigation cotton (Gossypium hirsutum L.) soil water content ROOT
下载PDF
Effects of irrigation water regime, soil clay content and their combination on growth,yield,and water use efficiency of rice grown in South China 被引量:5
3
作者 Yousef Alhaj Hamoud Xiangping Guo +2 位作者 Zhenchang Wang Sheng Chen Ghulam Rasool 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第4期144-155,共12页
To investigate the effect of irrigation regime,soil clay content and their combination on growth,yield,and water productivity of rice,a shelter experiment was conduct using Randomized Complete Block Design(RCBD)with a... To investigate the effect of irrigation regime,soil clay content and their combination on growth,yield,and water productivity of rice,a shelter experiment was conduct using Randomized Complete Block Design(RCBD)with a factorial arrangement of treatments with four replications.Irrigation regime was the main treatment investigated,set in three levels as R(30 mm-100%)(100%of saturation and 30 mm flooded),R(30 mm-90%)(90%of saturation and 30 mm flooded)and R(30 mm-70%)(70%saturation and 30 mm flooded),respectively.The sub-treatment was soil type,set in three levels as 40%,50%and 60%clay content,respectively.Results showed that irrigation regime and soil clay content had significant effects on growth,yield and water productivity of rice.However,their combination showed no significant impact on panicles number,root biomass,harvest index and irrigation water productivity.Higher soil clay content results in increase in growth,yield,and water productivity of rice.The total water consumption during R(30 mm-100%)was higher than that during R(30 mm-90%)and R(30 mm-70%)because the latter two saturation levels led to the cracking of soil and decrease of total number of irrigations.Cracks were consistently getting more serious with the reduction in soil water content and the increase in soil clay content.Cracks in soil will preferentially become the major routes of water losses,thus water percolation during R(30 mm-70%)was higher than that during R(30 mm-90%)and R(30 mm-100%)after each irrigation event.The total water use under R(30 mm-70%)exceeded the water consumption under R(30 mm-90%)due to the great amount of soil cracking as well as the excessive volume of standing water depth.Considering water consumption and grain yield,the following conclusion can be reached:(i)The reduction in water consumption was greater than the reduction in grain yield in the case of drying soil 10%below saturation before reflooding.(ii)The reduction in water consumption was less than the reduction in grain yield in the case of drying soil 30%below saturation before reflooding;(iii)The increase in water use was greater than the increase in grain yield in the case of maintaining soil moisture at 100%of saturation before reflooding.Therefore,the water use efficiency was recorded in the order of R(30 mm-90%)>R(30 mm-100%)>R(30 mm-70%). 展开更多
关键词 irrigation regime clay content COMBINATION GROWTH YIELD water productivity RICE
原文传递
Effects of irrigation water salinity on soil salt content distribution,soil physical properties and water use efficiency of maize for seed production in arid Northwest China 被引量:6
4
作者 Chengfu Yuan Shaoyuan Feng +2 位作者 Juan Wang Zailin Huo Quanyi Ji 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期137-145,共9页
In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four diff... In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four different water salinity levels that were arranged in a split plot design.These four water salinity levels were s0,s3,s6 and s9(0.71,3,6 and 9 g/L,respectively).The soil salt content,soil bulk density,soil porosity,saturated hydraulic conductivity,plant height,leaf area index and yield of maize for seed production were measured for studying the effects of saline water irrigation on soil salt content distribution,soil physical properties and water use efficiency.It was observed that higher salinity level of irrigation water and long duration of saline water irrigation resulted in more salt accumulation.Compared to initial values,the soil salt accumulation in 0-100 cm soil layer after three years of experiments for s0,s3,s6 and s9 was 0.189 mg/cm3,0.654 mg/cm3,0.717 mg/cm3 and 1.135 mg/cm3,respectively.Both greater salt levels in the irrigation water and frequent saline water irrigation led to greater soil bulk density,but poorer soil porosity and less saturated hydraulic conductivity.The saturated hydraulic conductivity decreased with increase in soil bulk density,but increased with improvement in soil porosity.It was noted that the maize height,leaf area index and maize yield gradually decreased with increase in water salinity.The maize yield decreased over 25%and the water use efficiency also gradually declined when irrigated with water containing 6 g/L and 9 g/L salinity levels.However,maize yield following saline water irrigation with 3 g/L decreased less than 20%and the decline in water use efficiency was not significant during the three-year experiment period.The results demonstrate that irrigation with saline water at the level of 6 g/L and 9 g/L in the study area is not suitable,while saline water irrigation with 3 g/L would be acceptable for a short duration together with salt leaching through spring irrigation before sowing. 展开更多
关键词 saline water irrigation soil salt content distribution soil physical properties maize for seed production water use efficiency
原文传递
Effects of Irrigation Amount on Soil Water Content of Gentiana macrophylla
5
作者 Xiaojun WANG Xinxue ZHANG Hua LIU 《Agricultural Biotechnology》 CAS 2022年第4期83-87,共5页
[Objectives]This study was conducted to investigate the effects of different irrigation quotas and irrigation times on soil physical and chemical properties and water content in the planting areas of Gentiana macrophy... [Objectives]This study was conducted to investigate the effects of different irrigation quotas and irrigation times on soil physical and chemical properties and water content in the planting areas of Gentiana macrophylla in dry farming areas of southern Ningxia.[Methods]G.macrophylla planted for three years was selected as the experimental material,and the water content,nutrients,bulk density and total porosity of the soil at different depths(0-20 and 20-40 cm)were measured under different irrigation quotas and irrigation times.[Results]Compared with the CK,different irrigation quotas and irrigation times could significantly improve the water contents of the 0-20 and 20-40 cm layers in the planting areas of G.macrophylla.The change trend of water content at the 0-20 cm soil depth was 3 times of irrigation>2 times of irrigation>1 time of irrigation>CK,and that at the 20-40 cm soil depth was 2 times of irrigation>3 times of irrigation>1 time of irrigation>CK.With the increase of irrigation times,soil urease in the 0-20 cm soil showed a trend of decreasing at first and then increasing,reaching a maximum value of 0.415 mg/g·24 h with 1 time of irrigation,which increased by 84.44%compared with the CK,and the value with two times of irrigation was basically the same as that of the CK,but 3 times of irrigation resulted in a value 57.33%higher than the CK.However,the changes of 20-40 cm were the opposite.The change trends of alkali-hydrolyzable nitrogen in the 0-20 and 20-40 cm soil layers with irrigation times was smaller,and the contents of soil organic carbon,available phosphorus and available potassium increased first and then decreased with the increase of irrigation times,and were generally higher than those in the CK.[Conclusions]This study provides a theoretical and technical basis for the artificial cultivation of G.macrophylla in dry farming areas of Ningxia. 展开更多
关键词 irrigation quota irrigation times water content EFFECT
下载PDF
Soil water and salt distribution under furrow irrigation of saline water with plastic mulch on ridge 被引量:7
6
作者 LiJuan CHEN Qi FENG 《Journal of Arid Land》 SCIE CSCD 2013年第1期60-70,共11页
Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa- ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans- por... Furrow irrigation when combined with plastic mulch on ridge is one of the current uppermost wa- ter-saving irrigation technologies for arid regions. The present paper studies the dynamics of soil water-salt trans- portation and its spatial distribution characteristics under irrigation with saline water in a maize field experiment. The mathematical relationships for soil salinity, irrigation amount and water salinity are also established to evaluate the contribution of the irrigation amount and the salinity of saline water to soil salt accumulation. The result showed that irrigation with water of high salinity could effectively increase soil water content, but the increment is limited com- paring with the influence from irrigation amount. The soil water content in furrows was higher than that in ridges at the same soil layers, with increments of 12.87% and 13.70% for MMF9 (the treatment with the highest water salinity and the largest amount of irrigation water) and MMF1 (the treatment with the lowest water salinity and the least amount of irrigation water) on 27 June, respectively. The increment for MMF9 was gradually reduced while that for MMF1 increased along with growth stages, the values for 17 August being 2.40% and 19.92%, respectively. Soil water content in the ridge for MMF9 reduced gradually from the surface layer to deeper layers while the surface soil water content for MMF1 was smaller than the contents below 20 cm at the early growing stage. Soil salinities for the treatments with the same amount of irrigation water but different water salinity increased with the water salinity. When water salinity was 6.04 dS/m, the less water resulted in more salt accumulation in topsoil and less in deep layers. When water salinity was 2.89 dS/m, however, the less water resulted in less salt accumulation in topsoil and salinity remained basically stable in deep layers. The salt accumulation in the ridge surface was much smaller than that in the furrow bottom under this technology, which was quite different from traditional furrow irrigation. The soil salinities for MMF7, MMF8 and MMF9 in the ridge surface were 0.191, 0.355 and 0.427 dS/m, respectively, whereas those in the furrow bottom were 0.316, 0.521 and 0.631 dS/m, respectively. The result of correlation analysis indicated that compared with irrigation amount, the irrigation water salinity was still the main factor influ- encing soil salinity in furrow irrigation with plastic mulch on ridge. 展开更多
关键词 water and salt transportation furrow irrigation saline water soil salinity soil water content
下载PDF
Effects of Drip System Uniformity and Irrigation Amount on Water and Salt Distributions in Soil Under Arid Conditions 被引量:4
7
作者 GUAN Hong-jie LI Jiu-sheng LI Yan-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期924-939,共16页
The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices ... The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices of drip system uniformity and irrigation amount. In the experiments, three Christiansen uniformity coefficients (CU) of approximately 65, 80, and 95% (referred to as low, medium, and high uniformity, respectively) and three irrigation amounts of 50, 75, and 100% of full irrigation were used. The distribution of the soil water content and bulk electrical conductivity (ECb) was monitored continuously with approximately equally spaced frequency domain reflectometry (FDR) sensors located along a dripline. Gravimetric samples of soil were collected regularly to determine the distribution of soil salinity. A great fluctuation in CU of water content and ECb at 60 cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb CU was substantially lower than the water content CU and its value was greatly related to the water content CU and the initial ECb CU. The spatial variation of seasonal mean soil water content and seasonal mean soil bulk electrical conductivity showed a high dependence on the variation pattern of emitter discharge rate along a dripline for the low and medium uniformity treatments. A greater irrigation amount produced a significantly lower soil salinity at the end of the irrigation season, while the influence of the system uniformity on the soil salinity was insignificant at a probability level of 0.1. In arid regions, the determination of the target drip irrigation system uniformity should consider the potential salinity risk of soil caused by nonuniform water application as the influence of the system uniformity on the distribution of the soil salinity was progressively strengthened during the growing season of crop. 展开更多
关键词 drip irrigation UNIFORMITY soil water content soil bulk electrical conductivity soil salinity
下载PDF
Ridge-furrow rainwater harvesting with supplemental irrigation to improve seed yield and water use efficiency of winter oilseed rape(Brassica napus L.) 被引量:2
8
作者 GU Xiao-bo LI Yuan-nong +1 位作者 DU Ya-dan YIN Min-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1162-1172,共11页
Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in a... Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage. 展开更多
关键词 ridge-furrow rainwater harvesting (RFRH) supplemental irrigation winter oilseed rape seed yield oil content water use efficience (WUE)
下载PDF
Effects of water application intensity of micro-sprinkler irrigation and soil salinity on environment of coastal saline soils 被引量:1
9
作者 Lin-lin Chu Yao-hu Kang Shu-qin Wan 《Water Science and Engineering》 EI CAS CSCD 2020年第2期116-123,共8页
To achieve the greatest leaching efficiency,water movement must occur under unsaturated flow conditions.Accordingly,the water application intensity of irrigation must be chosen carefully.The aim of this study was to e... To achieve the greatest leaching efficiency,water movement must occur under unsaturated flow conditions.Accordingly,the water application intensity of irrigation must be chosen carefully.The aim of this study was to evaluate the impact of the water application intensity of micro-sprinkler irrigation on coastal saline soil with different salt contents.To achieve this objective,a laboratory experiment was conducted with three soil salinity treatments(2.26,10.13,and 22.29 dS/m)and three water application intensity treatments(3.05,5.19,and 7.23 mm/h).The results showed that the effect of soil salinity on soil water content,electrical conductivity,and pH was significant,and the effect of the water application intensity was insignificant.High soil water content was present in the 40e60 cm profile in all soil salinity treatments,and the content was higher in the medium and high water application intensity treatments than in the low-intensity treatment.Significant salt leaching occurred in all treatments,and the effect was stronger in the high soil salinity treatment and medium water application intensity treatment.In the medium and high soil salinity treatments,pH exhibited a decreasing trend,with no trend change in the low soil salinity treatment,and the pH value was higher in the medium water application intensity treatment than in the other two treatments.These results indicated that the three intensities evaluated had no statistically different effect on the electrical conductivity of saturated soil-paste extracts(EC)in the upper 20 cm of the soil profile,and it would be better to maintain a lower value of the water application intensity. 展开更多
关键词 Soil water content Salinity Micro-sprinkler irrigation water application intensity Saline soil environment
下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
10
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
下载PDF
Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation 被引量:2
11
作者 FENG Xu-yu PU Jing-xuan +5 位作者 LIU Hai-jun WANG Dan LIU Yu-hang QIAO Shu-ting LEI Tao LIU Rong-hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期897-907,共11页
Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse e... Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse experiment was conducted to evaluate the effect of different fertigation frequencies on the distribution of soil moisture and nutrients and tomato yield under ADF.The treatments included three ADF frequencies with intervals of 3 days (F3),6 days (F6) and 12 days (F12),and conventional drip fertigation as a control (CK),which was fertilized once every 6 days.For the ADF treatments,two drip tapes were placed 10 cm away on each side of the tomato row,and alternate drip irrigation was realized using a manual valve on the distribution tapes.For the CK treatment,a drip tape was located close to the roots of the tomato plants.The total N application rate of all treatments was 180 kg ha^(-1).The total irrigation amounts applied to the CK treatment were450.6 and 446.1 mm in 2019 and 2020,respectively;and the irrigation amounts applied to the ADF treatments were 60%of those of the CK treatment.The F3 treatment resulted in water and N being distributed mainly in the 0–40-cm soil layer with less water and N being distributed in the 40–60-cm soil layer.The F6 treatment led to 21.0 and 29.0%higher 2-year average concentration of mineral N in the 0–20 and 20–40-cm soil layer,respectively and a 23.0%lower N concentration in the 40–60-cm soil layer than in the CK treatment.The 2-year average tomato yields of the F3,F6,F12,and CK treatments were 107.5,102.6,87.2,and 98.7 t ha^(-1),respectively.The tomato yield of F3 was significantly higher (23.3%) than that in the F12 treatment,whereas there was no significant difference between the F3 and F6 treatment.The F6 treatment resulted in yield similar to the CK treatment,indicating that ADF could maintain tomato yield with a 40%saving in water use.Based on the distribution of water and N,and tomato yield,a fertigation frequency of 6 days under ADF should be considered as a water-saving strategy for greenhouse tomato production. 展开更多
关键词 alternate partial root-zone irrigation drip fertigation soil water soil mineral content tomato yield
下载PDF
Smart Irrigation System: A Water Management Procedure
12
作者 Olugbenga Kayode Ogidan Abiodun Emmanuel Onile Oluwabukola Grace Adegboro 《Agricultural Sciences》 2019年第1期25-31,共7页
This paper presents a smart irrigation system suitable for use in places where water scarcity is a challenge. In many parts of Africa, even when irrigation is practiced, it is manually operated. Smart irrigation syste... This paper presents a smart irrigation system suitable for use in places where water scarcity is a challenge. In many parts of Africa, even when irrigation is practiced, it is manually operated. Smart irrigation system is thereby believed to be a major solution. The paper therefore presents a smart irrigation system that optimizes the available water in the water reservoir thus providing an efficient and effective water usage solution for the irrigation system. The irrigation system is able to automatically start/stop water pumps on the irrigation site based on the soil moisture content acquired from the moisture content sensor as well as the ultrasonic sensor measuring the water level in the reservoir. The measured sensor values are sent to the Arduino microcontroller for configuring the control algorithm. The system prioritizes irrigation operation by determining the number of pumps to be operated at any instance as well as their locations. In this way, different crops can be watered depending on their varying water requirements. In order to implement the design, a laboratory scale architectural model depicting a farm setting with reservoir, direct current (DC) pumps and the control unit was constructed. Experimental results revealed good performance which makes the developed system a suitable tool for studies on irrigation. 展开更多
关键词 SMART irrigation ARDUINO water Management water Level MOISTURE content
下载PDF
Water and nitrogen transport characteristics of single-line interference infiltration under film hole irrigation with muddy water and fertilizer
13
作者 JIANG Ruirui FEI Liangjun KANG Shouxuan 《排灌机械工程学报》 CSCD 北大核心 2022年第5期496-503,共8页
Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation ... Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation with muddy water and fertilizer.The relationship between the single-line interference infiltration parameters,the sand content,the wetting front movement distances,and the sand content were all established.The model of the cumulative infiltration volume of per unit film pore area,the vertical and horizontal wetting front movement distance of the free surface,and the wetting front movement distance of the interference center with sand content and infiltration time were proposed.Reveal the law of the change of soil water content and the distribution of NO_(3)^(-)-N content based on different muddy water sand content.The results indicate that at the same infiltration time,as the muddy water sand content increases,the cumulative infiltration volume per unit pore area decreases.The infiltration index of the free infiltration and the single-line interference vary little when the sand content increases,mainly are around 0.64 and 0.58.The relationship between infiltration parameters a,b and the sand content is linear function.At the same location,the more the sand content,the smaller the wetting front movement distance in free surface and the single-line interference surface,the less the NO_(3)^(-)-N content. 展开更多
关键词 film hole irrigation single-line interference infiltration muddy water FERTILIZER sand content NO_(3)^(-)-N content
下载PDF
Managing irrigation of fruit trees using plant water status
14
作者 Rashid Al-Yahyai 《Agricultural Sciences》 2012年第1期35-43,共9页
Optimum growth and production of fruit crops is strongly linked to managing irrigation water. Various method of estimating tree water requirements have been utilized such as direct and indirect soil, water, and climat... Optimum growth and production of fruit crops is strongly linked to managing irrigation water. Various method of estimating tree water requirements have been utilized such as direct and indirect soil, water, and climatic measurements. Due to differences in fruit tree anatomical and morphological structures and their adaptation to excess and deficit soil water content, such estimates of irrigation water requirements may be more suitable for herbaceous plants but not as accurate for trees. Studies on temperate and tropical fruit trees, using apple (Malus domestica) and star-fruit (Averrhoa carambola), respectively, showed that tree water potential is highly correlated to soil water status. Irrigation based on climate data (ET) and monitoring of soil water resulted in no significant differences in soil or tree water status of orchard-grown fruit trees under temperate and subtropical climatic conditions. The results indicated the need for better understanding and utilization of tree physiological parameters for management of irrigation water of fruit crops. This will ultimately lead to achieving optimum yield and fruit quality while conserving water resources. 展开更多
关键词 Apple Star-Fruit water Potential water content TREE PHYSIOLOGY TEMPERATE TROPICS irrigation Scheduling TREE water Status
下载PDF
Subsurface irrigation with ceramic emitters improves wolfberry yield and economic benefits on the Tibetan Plateau, China
15
作者 HAN Mengxue ZHANG Lin LIU Xiaoqiang 《Journal of Arid Land》 SCIE CSCD 2023年第11期1376-1390,共15页
Climate warming has led to the expansion of arable land at high altitudes,but it has also increased the demand for water use efficiency(WUE).To address this issue,the development of water-saving irrigation technology ... Climate warming has led to the expansion of arable land at high altitudes,but it has also increased the demand for water use efficiency(WUE).To address this issue,the development of water-saving irrigation technology has become crucial in improving water productivity and economic returns.This study aimed to assess the impacts of three irrigation methods on water productivity and economic returns in wolfberry(Lycium barbarum L.)cultivation on the Tibetan Plateau,China during a two-year field trial.Results showed that subsurface irrigation with ceramic emitters(SICE)outperformed surface drip irrigation(DI)and subsurface drip irrigation(SDI)in terms of wolfberry yield.Over the two-year period,the average yield with SICE increased by 8.0%and 2.3%compared with DI and SDI,respectively.This improvement can be attributed to the stable soil moisture and higher temperature accumulation achieved with SICE.Furthermore,SICE exhibited higher WUE,with 14.6%and 4.5%increases compared with DI and SDI,respectively.In addition to the agronomic benefits,SICE also proved advantageous in terms of economic returns.Total average annual input costs of SICE were lower than the other two methods starting from the 8th year.Moreover,the benefit-cost ratio of SICE surpassed the other methods in the 4th year and continued to widen the gap with subsequent year.These findings highlight SICE as an economically viable water-saving irrigation strategy for wolfberry cultivation on the Tibetan Plateau.Thus,this research not only provides an effective water-saving irrigation strategy for wolfberry cultivation but also offers insights into addressing irrigation-related energy challenges in other crop production systems. 展开更多
关键词 irrigation system soil water content soil temperature water use efficiency economic benefit
下载PDF
Emitter discharge characteristics of vertical tube irrigation affected by various factors
16
作者 WANG Cheng BAI Dan +1 位作者 LI Yibo BAI Xueli 《排灌机械工程学报》 CSCD 北大核心 2023年第1期102-108,共7页
To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil w... To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil water content, and tube diameter on the emitter discharge of the vertical tube were studied. The results show that quantitative relationship between the time and cumulative infiltration and emitter discharge of the vertical tube is obtained, and R 2 is more than 0.98. Emitter discharge exhibits a positive and negative correlation with the pressure head and soil water content, respectively. Tube dia- meter has a nonsignificant effect on the emitter discharge. Changes of the soil water content around the emitter water outlet are the main causes of emitter discharge variations. In the experiments, the range of vertical tube emitter discharge is 0.056-1.102 L/h. The emitter of vertical tube irrigation automatically adjusts the soil water content and maintains the root zone soil water content within an appropriate range, which achieves continuous irrigation, and further achieves the effect of water-saving. 展开更多
关键词 vertical tube irrigation emitter discharge pressure head initial soil water content
下载PDF
高含沙水滴灌灌水器堵塞机制及防堵技术研究进展 被引量:1
17
作者 夏天 田军仓 李小纲 《节水灌溉》 北大核心 2024年第4期51-57,共7页
为解决黄河水中粒径小于0.10 mm细小泥沙颗粒引发的滴灌灌水器堵塞问题。通过文献调研,回顾了高含沙水滴灌条件下灌水器物理堵塞机制相关研究进展,并提出了进一步研究方向。细小泥沙颗粒含量较高的浑水滴灌时,滴头堵塞主要是含沙量、泥... 为解决黄河水中粒径小于0.10 mm细小泥沙颗粒引发的滴灌灌水器堵塞问题。通过文献调研,回顾了高含沙水滴灌条件下灌水器物理堵塞机制相关研究进展,并提出了进一步研究方向。细小泥沙颗粒含量较高的浑水滴灌时,滴头堵塞主要是含沙量、泥沙粒径与颗粒级配耦合作用的结果。滴灌系统工作条件如工作压力的动态变化有助于移除流道内黏、粉等细颗粒堵塞物质,促进较大泥沙颗粒排出流道;灌溉水温越高,滴头抗物理堵塞性能越强;对浑水加气和磁化处理可改变毛管内水流水力特性及悬浮泥沙运动规律,增强水流拖拽力,减小管道内泥沙淤积量。此外,施肥增强了水体中泥沙颗粒间的絮凝作用,对浑水水肥一体化滴灌滴头堵塞具有明显加速作用。浑水含沙量、粒径和颗粒级配是引发滴头物理堵塞的重要因素,确定易引发滴头堵塞的敏感含沙量、颗粒粒径段,选用适宜肥料种类和施肥浓度阈值,优化滴灌系统工作条件参数是改变毛管内泥沙颗粒运移和沉积规律、延缓滴头堵塞进程、提高水肥一体化滴灌水肥利用效率的有力措施;采用统一的灌水试验方法,充分利用现代测试手段,结合生产实际有针对性地改进工程技术处理措施是解决滴头堵塞问题的必要途径。 展开更多
关键词 滴灌灌水器 滴头堵塞 高含沙水 过滤抗堵技术 进展
下载PDF
农田裂隙优先流对灌水模式/初始墒情响应机制及其模拟研究
18
作者 翟亚明 王冲 +2 位作者 王策 陈理政 付丽红 《中国农村水利水电》 北大核心 2024年第2期56-63,73,共9页
农田灌溉管理过程中优先流降低水肥利用效率,加剧地下水污染风险。基于碘化钾-淀粉染色示踪试验,分析了地面灌DM、微喷灌WP1(20 mm/h)、微喷灌WP2(40 mm/h)处理下的裂隙优先流特征,验证了基于水量平衡的双域渗透模型的有效性,并采用4组... 农田灌溉管理过程中优先流降低水肥利用效率,加剧地下水污染风险。基于碘化钾-淀粉染色示踪试验,分析了地面灌DM、微喷灌WP1(20 mm/h)、微喷灌WP2(40 mm/h)处理下的裂隙优先流特征,验证了基于水量平衡的双域渗透模型的有效性,并采用4组初始体积含水率(0.20、0.25、0.30、0.35 cm^(3)/cm^(3))与5组灌水强度(12.0、24.0、36.0、48.0、60.0mm/h)旋转组合设计进行模拟应用分析。结果表明,WP1、WP2处理整体上水分以均匀的基质流形式入渗;DM处理下的土壤剖面染色区域在垂直方向上可明显划分为基质流区(0~6.9 cm)和优先流区(>6.9 cm)。此外,DM处理下的基质流深度、灌水均匀度显著(P<0.05)小于WP1、WP2处理,而其优先流指数及湿润锋弯曲度均极显著大于(P<0.01)WP1、WP2处理,这表明地面灌可以激活更多的优先流路径,增大优先流发育程度和空间异质性,降低灌水质量。基于水量平衡的双域渗透模型可有效预测不同灌水强度下的基质流深度和土壤剖面染色面积比变化趋势(R2≥0.9276、NSE≥0.8844、RSR≤0.0230),初始体积含水率和灌水强度旋转组合设计模拟结果表明,增加灌水强度或减小初始含水率会增加优先流的程度而降低灌水质量,故建议在农田灌溉管理过程中采用“高频少量”的灌水模式以减少优先流导致的水肥利用效率降低。该研究成果可为农田灌溉决策提供理论依据,其试验数据可为优先流模型优化与验证提供重要的数据支撑。 展开更多
关键词 染色示踪试验 优先流 灌水强度 含水率 数值模拟
下载PDF
光学遥感在区域灌溉监测中应用的研究进展
19
作者 李伟 宋睿 +1 位作者 刘明江 李硕 《排灌机械工程学报》 CSCD 北大核心 2024年第11期1157-1165,共9页
农业干旱、灌溉用水效率低等问题严重制约着中国农业生产的发展.及时准确地获取田间水分信息是建立区域灌溉管理系统的前提和基础,传统的水分信息监测方法应用范围小、效率低,无法满足现代农业的需求,而遥感技术提供了一个相对高效精准... 农业干旱、灌溉用水效率低等问题严重制约着中国农业生产的发展.及时准确地获取田间水分信息是建立区域灌溉管理系统的前提和基础,传统的水分信息监测方法应用范围小、效率低,无法满足现代农业的需求,而遥感技术提供了一个相对高效精准的技术方法.分别介绍了作物需水量的计算方法和灌溉面积监测技术,其中作物需水量的计算介绍了土壤水分系数估算法和植被指数反演法,这2种方法都利用作物系数法对作物需水量进行计算,主要区别在于计算参数的获取方式;灌溉面积监测总结了基于光谱特征空间反演、冠层温度反演、蒸散发模型反演和植被指数反演4种方法,通过蒸散发模型和植被干旱指数反演灌溉面积是目前应用较为广泛的方法.在此基础上,构建基于田间水分信息的区域灌溉管理体系,以达到精准灌溉、科学决策的目的. 展开更多
关键词 遥感 精量灌溉 灌溉面积 土壤含水量 作物需水量
下载PDF
不同灌水处理对春玉米土壤水分、耗水特征及产量的影响
20
作者 赵经华 袁如芯 +2 位作者 王金茂 孟新梅 杨庭瑞 《灌溉排水学报》 CAS CSCD 2024年第5期1-7,15,共8页
【目的】探究不同灌水定额对春玉米全生育期耗水特征及产量的影响,优化克拉玛依地区春玉米节水灌溉制度,以提高当地水分利用效率。【方法】于2021年5—9月在克拉玛依农业综合开发区开展春玉米田间试验,设置6个灌水处理W1(225 m^(3)/hm^(... 【目的】探究不同灌水定额对春玉米全生育期耗水特征及产量的影响,优化克拉玛依地区春玉米节水灌溉制度,以提高当地水分利用效率。【方法】于2021年5—9月在克拉玛依农业综合开发区开展春玉米田间试验,设置6个灌水处理W1(225 m^(3)/hm^(2))、W2(300 m^(3)/hm^(2))、W3(375 m^(3)/hm^(2))、W4(450 m^(3)/hm^(2))、W5(525 m^(3)/hm^(2))、W6(600 m^(3)/hm^(2)),探究不同灌水定额对春玉米耗水特征及产量的影响。【结果】①各生育期不同灌水处理0~100 cm土层土壤含水率随土层深度增加呈“增-减-增”的变化趋势。W5处理在喇叭口期、抽雄散粉期、乳熟期、完熟期较W1、W2、W3、W4、W6处理0~100 cm土层土壤贮水量平均增加了2.35%~9.11%、0.21%~4.37%、0.39%~1.79%、0.60%~4.48%。②完熟期W5处理百粒质量显著高于W1处理和W2处理,但与W3、W4、W6处理无显著性差异。W5处理穗粒数较其他处理显著提高10.49%~36.01%,穗长较其他处理显著提高8.31%~27.12%。③综合评判模型计算得出W5处理(525 m3/hm^(2))综合评价指数最高。【结论】因此,全生育期灌水10次,灌水定额为525 m3/hm^(2)是克拉玛依地区最优灌水处理。 展开更多
关键词 土壤含水率 耗水特征 产量 春玉米 灌水定额优化
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部