期刊文献+
共找到27,117篇文章
< 1 2 250 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:4
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice 被引量:2
2
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury 被引量:1
3
作者 Yanan Dou Xiaowei Fei +7 位作者 Xin He Yu Huan Jialiang Wei Xiuquan Wu Weihao Lyu Zhou Fei Xia Li Fei Fei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1608-1617,共10页
Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in ... Elevated intraocular pressure(IOP)is one of the causes of retinal ischemia/reperfusion injury,which results in NRP3 inflammasome activation and leads to visual damage.Homerla is repo rted to play a protective role in neuroinflammation in the cerebrum.However,the effects of Homerla on NLRP3inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown.In our study,animal models we re constructed using C57BL/6J and Homer1^(flox/-)/Homerla^(+/-)/Nestin-Cre^(+/-)mice with elevated IOP-induced retinal ischemia/repe rfusion injury.For in vitro expe riments,the oxygen-glucose deprivation/repe rfusion injury model was constructed with M uller cells.We found that Homerla ove rexpression amelio rated the decreases in retinal thickness and Muller cell viability after ischemia/reperfusion injury.Furthermore,Homerla knockdown promoted NF-κB P65^(Ser536)activation via caspase-8,NF-κB P65 nuclear translocation,NLRP3 inflammasome formation,and the production and processing of interleukin-1βand inte rleukin-18.The opposite results we re observed with Homerla ove rexpression.Finally,the combined administration of Homerla protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1^(flox/-)Homer1a^(+/-)/Nestin-Cre^(+/-)mice and apoptosis in M uller cells after ischemia/reperfusion injury.Taken together,these studies demonstrate that Homer1a exerts protective effects on retinal tissue and M uller cells via the caspase-8/NF-KB P65/NLRP3 pathway after I/R injury. 展开更多
关键词 CASPASE-8 Homer1a INTERLEUKIN-18 INTERLEUKIN-1Β intraocular pressure ischemia/reperfusion injury JSH-23 Müller cells NLRP3 nuclear factor-kB p65 RETINA
下载PDF
Development of a new cerebral ischemia reperfusion model of Mongolian gerbils and standardized evaluation system 被引量:1
4
作者 Ying Wu Caijiao Hu +9 位作者 Zhihui Li Feiyang Li Jianyi Lv Meng Guo Xin Liu Changlong Li Xueyun Huo Zhenwen Chen Lifeng Yang Xiaoyan Du 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第1期48-55,共8页
Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symp... Background:The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis.However,the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle.Additionally,the lack of an evaluation system for the cer-ebral ischemia/reperfusion(I/R)model of gerbils has shackled the application of this model.Methods:We created a symptom-oriented principle and detailed neurobehavioral scoring criteria.At different time points of reperfusion,we analyzed the alteration in locomotion by rotarod test and grip force score,infarct volume by triphenyltetrazo-lium chloride(TTC)staining,neuron loss using Nissl staining,and histological charac-teristics using hematoxylin-eosin(H&E)straining.Results:With a successful model rate of 56%,32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury,and the mortality rate in the male gerbils was significantly higher than that in the female gerbils.The suc-cessfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion;formed obvious infarction;exhibited typi-cal pathological features,such as tissue edema,neuronal atrophy and death,and vacuolated structures;and were partially recovered with the extension of reperfu-sion time.Conclusion:This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model,which could provide a new cerebral I/R model of gerbils with more practical applications. 展开更多
关键词 ischemia/reperfusion Mongolian gerbil standardized model system unilateral carotid occlusion
下载PDF
Cav3.2 channel regulates cerebral ischemia/reperfusion injury:a promising target for intervention 被引量:1
5
作者 Feibiao Dai Chengyun Hu +7 位作者 Xue Li Zhetao Zhang Hongtao Wang Wanjun Zhou Jiawu Wang Qingtian Geng Yongfei Dong Chaoliang Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2480-2487,共8页
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ... Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury. 展开更多
关键词 CALCINEURIN Cav3.2 channel cerebral ischemia/reperfusion hippocampus HYPOXIA/REOXYGENATION inflammatory response nuclear factor of activated T cells 3 oxidative stress primary hippocampal neurons stroke
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
6
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
7
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 apoptosis ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
Natural Products Improve Organ Microcirculation Dysfunction Following Ischemia/Reperfusion-and Lipopolysaccharide-Induced Disturbances:Mechanistic and Therapeutic Views
8
作者 Jingyan Han Quan Li +6 位作者 Kai Sun Chunshui Pan Jian Liu Ping Huang Juan Feng Yanchen Liu Gerald A.Meininger 《Engineering》 SCIE EI CAS CSCD 2024年第7期77-99,共23页
Microcirculatory disturbances are complex processes caused by many factors,including abnormal vasomotor responses,decreased blood flow velocity,vascular endothelial cell injury,altered leukocyte and endothelial cell i... Microcirculatory disturbances are complex processes caused by many factors,including abnormal vasomotor responses,decreased blood flow velocity,vascular endothelial cell injury,altered leukocyte and endothelial cell interactions,plasma albumin leakage,microvascular hemorrhage,and thrombosis.These disturbances involve multiple mechanisms and interactions among mechanisms that can include energy metabolism,the mitochondrial respiratory chain,oxidative stress,inflammatory factors,adhesion molecules,the cytoskeleton,vascular endothelial cells,caveolae,cell junctions,the vascular basement membrane,neutrophils,monocytes,and platelets.In clinical practice,aside from drugs that target abnormal vasomotor responses and platelet adhesion,there continues to be a lack of multi-target drugs that can regulate the complex mechanistic links and interactions underlying microcirculatory disturbances.Natural products have demonstrated obvious positive therapeutic effects in treating ischemia/reperfusion(I/R)-and lipopolysaccharide(LPS)-induced microcirculatory disturbances.In recent years,numerous research papers on the improvement of microcirculatory function by natural products have been published in international journals.In 2008 and 2017,the first listed author of this review was invited to publish reviews in the journal of Pharmacology&Therapeutics on the improvement of microcirculatory disturbances and organ injury induced by I/R using Salvia miltiorrhiza ingredients and other natural components of compounded Chinese medicine,respectively.This review systematically summarizes the effects,targets of action,and mechanisms of natural products regarding improving I/R-and LPSinduced microcirculatory disturbances and tissue injury.Based on this summary,scientific proposals are suggested for the discovery of new drugs to improve microcirculatory disturbances in disease. 展开更多
关键词 ischemia/reperfusion LIPOPOLYSACCHARIDE Natural products Leukocyte activation Hyperpermeability
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
9
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemiareperfusion injury N-ACETYLSEROTONIN high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κB RATS
下载PDF
Lactiplantibacillus plantarum AR113 alleviates microbiota dysbiosis of tongue coating and cerebral ischemia/reperfusion injury in rat
10
作者 Zhiqiang Xiong Gang Liu +5 位作者 Ling Fang Xiuming Li Yongjun Xia Guangqiang Wang Xin Song Lianzhong Ai 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2132-2140,共9页
Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and r... Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and rehabilitation is unknown.Here,TCM from stroke patients(SP)was characterized using molecular techniques.The occurrence of stroke resulted in TCM dysbiosis with significantly reduced species richness and diversity.The abundance of Prevotella,Leptotrichia,Actinomyces,Alloprevotella,Haemophilus,and TM7_[G-1]were greatly reduced,but common infection Streptococcus and Pseudomonas were remarkably increased.Furthermore,an antioxidative probiotic Lactiplantibacillus plantarum AR113 was used for TCM intervention in stroke rats with cerebral ischemia/reperfusion(I/R).AR113 partly restored I/R induced change of TCM and gut microbiota with significantly improved neurological deficit,relieved histopathologic change,increased activities of antioxidant enzymes,and decreased contents of oxidative stress biomarkers.Moreover,the gene expression of antioxidant-related proteins and apoptosis-related factors heme oxygenase-1(HO-1),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),nuclear factor erythroid 2-related factor 2(Nrf2),NAD(P)H:quinone oxidoreductase-1(NQO-1),and Bcl-2 was significantly increased,but cytochrome C,cleaved caspase-3,and Bax were markedly decreased in the brain by AR113 treatment.The results suggested that AR113 could ameliorate cerebral I/R injury through antioxidation and anti-apoptosis pathways,and AR113 intervention of TCM may have the application potential for stroke prevention and control. 展开更多
关键词 Stroke Cerebral ischemia/reperfusion Tongue coating Lactiplantibacillus plantarum AR113 Probiotic intervention
下载PDF
Inhibition of SLC26A4 regulated by electroacupuncture suppresses the progression of myocardial ischemia-reperfusion injury
11
作者 FEI KONG QIYUAN TIAN +4 位作者 BINGLIN KUANG LILI SHANG XIAOXIAO ZHANG DONGYANG LI YING KONG 《BIOCELL》 SCIE 2024年第4期665-675,共11页
Introduction:Myocardial ischemia-reperfusion(IR)injury has received widespread attention due to its damaging effects.Electroacupuncture(EA)pretreatment has preventive effects on myocardial IR injury.SLC26A4 is a Na+in... Introduction:Myocardial ischemia-reperfusion(IR)injury has received widespread attention due to its damaging effects.Electroacupuncture(EA)pretreatment has preventive effects on myocardial IR injury.SLC26A4 is a Na+independent anion reverse transporter and has not been reported in myocardial IR injury.Objectives:Tofind potential genes that may be regulated by EA and explore the role of this gene in myocardial IR injury.Methods:RNA sequencing and bioinformatics analysis were performed to obtain the differentially expressed genes in the myocardial tissue of IR rats with EA pretreatment.Myocardial infarction size was detected by TTC staining.Serum CK,creatinine kinase-myocardial band,Cardiac troponin I,and lactate dehydrogenase levels were determined by ELISA.The effect of SLC26A4 on cardiomyocyte apoptosis was explored by TUNEL staining and western blotting.The effects of SLC26A4 on inflammation were determined by HE staining,ELISA,and real-time PCR.The effect of SLC26A4 on the NF-κB pathway was determined by western blotting.Results:SLC26A4 was up-regulated in IR rats but downregulated in IR rats with EA pretreatment.Compared with IR rats,those with SLC26A4 knockdown exhibited improved cardiac function according to decreased myocardial infarction size,reduced serum LDH/CK/CK-MB/cTnI levels,and elevated left ventricular ejection fraction and fractional shortening.SLC26A4 silencing inhibited myocardial inflammation,cell apoptosis,phosphorylation,and nuclear translocation of NF-κB p65.Conclusion:SLC26A4 exhibited promoting effects on myocardial IR injury,while the SLC26A4 knockdown had an inhibitory effect on the NF-κB pathway.These results further unveil the role of SLC26A4 in IR injury. 展开更多
关键词 Myocardial ischemia reperfusion SLC26A4 NF-κB pathway
下载PDF
Neuroprotective potential for mitigating ischemia-reperfusion-induced damage
12
作者 Zi Ye Runqing Liu +6 位作者 Hangxing Wang Aizhen Zuo Cen Jin Nan Wang Huiqi Sun Luqian Feng Hua Yang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2199-2217,共19页
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Curre... Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury. 展开更多
关键词 apoptosis autophagy blood-brain barrier dietary supplements drug HORMONES inflammation NEUROPROTECTION oxidative stress prognosis PYROPTOSIS reperfusion injury risk factors RNA THERAPEUTICS
下载PDF
Long non-coding RNA-AK138945 regulates myocardial ischemia-reperfusion injury via the miR-1-GRP94 signaling pathway
13
作者 Yanying Wang Jian Huang +13 位作者 Han Sun Jie Liu Yingchun Shao Manyu Gong Xuewen Yang Dongping Liu Zhuo Wang Haodong Li Yanwei Zhang Xiyang Zhang Zhiyuan Du Xiaoping Leng Lei Jiao Ying Zhang 《Frigid Zone Medicine》 2024年第1期31-40,共10页
Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)reg... Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)regulate MIRI through multiple mechanisms.This study explored the regulatory effect of lncRNA-AK138945 on myocardial ischemia-reperfusion injury and its mechanism.Methods:In vivo,8-to 12-weeks-old C57BL/6 male mice underwent ligation of the left anterior descending coronary artery for 50 minutes followed by reperfusion for 48 hours.In vitro,the primary cultured neonatal mouse ventricular cardiomyocytes(NMVCs)were treated with 100μmol/L hydrogen peroxide(H_(2)O_(2)).The knockdown of lncRNA-AK138945 was evaluated to detect cardiomyocyte apoptosis,and a glucose-regulated,endoplasmic reticulum stress-related protein 94(GRP94)inhibitor was used to detect myocardial injury.Results:We found that the expression level of lncRNA-AK138945 was reduced in MIRI mouse heart tissue and H2O2-treated cardiomyocytes.Moreover,the proportion of apoptosis in cardiomyocytes increased after lncRNA-AK138945 was silenced.The expression level of Bcl2 protein was decreased,and the expression level of Bad,Caspase 9 and Caspase 3 protein was increased.Our further study found that miR-1a-3p is a direct target of lncRNA-AK138945,after lncRNA-AK138945 was silenced in cardiomyocytes,the expression level of miR-1a-3p was increased while the expression level of its downstream protein GRP94 was decreased.Interestingly,treatment with a GRP94 inhibitor(PU-WS13)intensified H2O2-induced cardiomyocyte apoptosis.After overexpression of FOXO3,the expression levels of lncRNA-AK138945 and GRP94 were increased,while the expression levels of miR-1a-3p were decreased.Conclusion:LncRNA-AK138945 inhibits GRP94 expression by regulating miR-1a-3p,leading to cardiomyocyte apoptosis.The transcription factor Forkhead Box Protein O3(FOXO3)participates in cardiomyocyte apoptosis induced by endoplasmic reticulum stress through up-regulation of lncRNA-AK138945. 展开更多
关键词 myocardial ischemia reperfusion lncRNA APOPTOSIS microRNAGRP94
下载PDF
Argon: a novel therapeutic option to treat neuronal ischemia and reperfusion injuries?
14
作者 Felix Ulbrich Ulrich Goebel 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1043-1044,共2页
Neuronal injury and neuroprotection:Ischemia and reperfusion injuries in neuronal cells such as acute ischemic stroke-represent the third leading cause of death in the world.Current therapeutic concepts mainly aim to... Neuronal injury and neuroprotection:Ischemia and reperfusion injuries in neuronal cells such as acute ischemic stroke-represent the third leading cause of death in the world.Current therapeutic concepts mainly aim to re-establish cerebral blood flow within a time window of less than 3 hours with the goal of limiting secondary brain injury. 展开更多
关键词 a novel therapeutic option to treat neuronal ischemia and reperfusion injuries MCAO NDS OGD
下载PDF
Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion 被引量:3
15
作者 Lin-Yan Huang Ju-Yun Ma +9 位作者 Jin-Xiu Song Jing-Jing Xu Rui Hong Hai-Di Fan Heng Cai Wan Wang Yan-Ling Wang Zhao-Li Hu Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1040-1045,共6页
Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In t... Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue(cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury. 展开更多
关键词 CDC42 cerebral ischemia/reperfusion injury GPR91 neural stem cells neurogenesis PROLIFERATION SIRT5 SUCCINATE SUCCINYLATION
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury 被引量:1
16
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the antiferroptosis system:based on a novel rat model 被引量:3
17
作者 Tian-Lei Zhang Zhi-Wei Zhang +6 位作者 Wei Lin Xin-Ru Lin Ke-Xin Lin Ming-Chu Fang Jiang-Hu Zhu Xiao-Ling Guo Zhen-Lang Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2229-2236,共8页
Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better underst... Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy,in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats.First,based on the conventional RiceVannucci model of hypoxic-ischemic encephalopathy,we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge.Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins.We also performed transmission electron microscopy and found typical characteristics of ferroptosis,including mitochondrial shrinkage,ruptured mitochondrial membranes,and reduced or absent mitochondrial cristae.Further,both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein,which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage.Finally,we found that ferroptosis-related Ferritin(Fth1)and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury.Based on these results,it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion.Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system. 展开更多
关键词 ferroptosis hypoxic-ischemic brain injury hypoxic-ischemic encephalopathy hypoxic-ischemic reperfusion brain injury mitochondria model proteomic analysis reperfusion Rice-Vannucci transmission electron microscopy
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:2
18
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B Cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
Vav1 promotes inflammation and neuronal apoptosis in cerebral ischemia/reperfusion injury by upregulating microglial and NLRP3 inflammasome activation 被引量:6
19
作者 Jing Qiu Jun Guo +3 位作者 Liang Liu Xin Liu Xianhui Sun Huisheng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2436-2442,共7页
Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a gua... Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a guanine nucleotide exchange factor that is related to microglial activation.However,how Vav1 participates in the inflammato ry response after cerebral ischemia/reperfusion inj ury remains unclea r.In this study,we subjected rats to occlusion and repe rfusion of the middle cerebral artery and subjected the BV-2 mic roglia cell line to oxygen-glucose deprivatio n/reoxygenation to mimic cerebral ischemia/repe rfusion in vivo and in vitro,respectively.We found that Vav1 levels were increased in the brain tissue of rats subjected to occlusion and reperfusion of the middle cerebral arte ry and in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation.Silencing Vav1 reduced the cerebral infarct volume and brain water content,inhibited neuronal loss and apoptosis in the ischemic penumbra,and im p roved neurological function in rats subjected to occlusion and repe rfusion of the middle cerebral artery.Further analysis showed that Vav1 was almost exclusively localized to microglia and that Vav1 downregulation inhibited microglial activation and the NOD-like receptor pyrin 3(NLRP3) inflammasome in the ischemic penumbra,as well as the expression of inflammato ry facto rs.In addition,Vov1 knoc kdown decreased the inflammatory response exhibited by BV-2 cells after oxygen-glucose deprivation/reoxyge nation.Taken together,these findings show that silencing Vav1 attenuates inflammation and neuronal apoptosis in rats subjected to cerebral ischemia/repe rfusion through inhibiting the activation of mic roglia and NLRP3 inflammasome. 展开更多
关键词 apoptosis cerebral ischemia/reperfusion inflammatory cytokines microglia microglial activation middle cerebral artery occlusion neuroprotection NLRP3 inflammasome oxygen-glucose deprivation/reoxygenation Vav1
下载PDF
PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons 被引量:10
20
作者 Wei-Tao Yan Wen-Juan Zhao +5 位作者 Xi-Min Hu Xiao-Xia Ban Wen-Ya Ning Hao Wan Qi Zhang Kun Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期357-363,共7页
PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory dise... PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory diseases.Although our previous lite rature mining study suggested that PANoptosis might occur in neuronal ischemia/repe rfusion injury,little experimental research has been reported on the existence of PANoptosis.In this study,we used in vivo and in vitro retinal neuronal models of ischemia/repe rfusion injury to investigate whether PAN optosis-like cell death(simultaneous occurrence of pyroptosis,apo ptosis,and necroptosis)exists in retinal neuronal ischemia/repe rfusion injury.Our results showed that ischemia/repe rfusion injury induced changes in morphological features and protein levels that indicate PANoptosis-like cell death in retinal neurons both in vitro and in vivo.Ischemia/repe rfusion inju ry also significantly upregulated caspase-1,caspase-8,and NLRP3 expression,which are important components of the PANoptosome.These results indicate the existence of PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons and provide preliminary experimental evidence for future study of this new type of regulated cell death. 展开更多
关键词 apoptosis gasdermin-D(GSDMD) ischemia/reperfusion mixed lineage kinase domain-like protein(MLKL) NECROPTOSIS NOD-like receptor protein 3(NLRP3) PANoptosis PYROPTOSIS receptor-interacting protein kinase 3(RIPK3) retinal neuron
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部