期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Weighted gene co-expression network analysis reveals similarities and differences of molecular features between dilated and ischemic cardiomyopathies
1
作者 Felix K.Biwott Ni-Ni Rao +1 位作者 Chang-Long Dong Guang-Bin Wang 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期14-29,共16页
Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different c... Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different classes of cardiomyopathies remain elusive.This paper aims to describe the similarities and differences in molecular features of dilated cardiomyopathy(DCM)and ischemic cardiomyopathy(ICM).We firstly detected the co-expressed modules using the weighted gene co-expression network analysis(WGCNA).Significant modules associated with DCM/ICM were identified by the Pearson correlation coefficient(PCC)between the modules and the phenotype of DCM/ICM.The differentially expressed genes in the modules were selected to perform functional enrichment.The potential transcription factors(TFs)prediction was conducted for transcription regulation of hub genes.Apoptosis and cardiac conduction were perturbed in DCM and ICM,respectively.TFs demonstrated that the biomarkers and the transcription regulations in DCM and ICM were different,which helps make more accurate discrimination between them at molecular levels.In conclusion,comprehensive analyses of the molecular features may advance our understanding of DCM and ICM causes and progression.Thus,this understanding may promote the development of innovative diagnoses and treatments. 展开更多
关键词 Dilated cardiomyopathy(DCM) Hub genes ischemic cardiomyopathy(ICM) Transcription factors(TFs) Weighted gene co-expression network analysis(WGCNA)
下载PDF
Disease Prevention and Alleviation by Human Myoblast Transplantation 被引量:4
2
作者 Peter K. Law 《Open Journal of Regenerative Medicine》 2016年第2期25-43,共19页
Myoblast implantation is a unique, patented technology of muscle regeneration being tested in Phase III clinical trials of muscular dystrophy, ischemic cardiomyopathy, Phase II trial of cancer, and Phase I trial of Ty... Myoblast implantation is a unique, patented technology of muscle regeneration being tested in Phase III clinical trials of muscular dystrophy, ischemic cardiomyopathy, Phase II trial of cancer, and Phase I trial of Type II diabetes. Differentiated and committed, myoblasts are not stem cells. Implanted myoblasts fuse spontaneously among themselves, replenishing genetically normal myofibers. They also fuse with genetically abnormal myofibers of muscular dystrophy, cardiomyopathy, or Type II diabetes, transferring their nuclei containing the normal human genome to provide stable, long-term expression of the missing gene products. They develop to become cardiomyocytes in the infracted myocardium. Myoblasts transduced with VEGF<sub>165</sub> allow concomitant regeneration of blood capillaries and myofibers. They are potent biologics for treating heart failure, ischemic cardiomyopathy, diabetic ischemia, erectile dysfunction, and baldness. Myoblasts, because of their small size, spindle shape, and resilience, can grow within wrinkles and on skin surfaces, thus enhancing the color, luster and texture of the skin “plated” with them. They can be injected subcutaneously as a cellular filler to reduce wrinkles. Intramuscular injection of myoblasts can augment the size, shape, consistency, tone and strength of muscle groups, improving the lines, contours and vitality to sculpt a youthful appearance. This highly promising technology has great social economic values in treating hereditary, fatal and debilitating disease conditions. 展开更多
关键词 Human Gene Therapy MYOBLASTS Muscular Dystrophies Heart Failure ischemic cardiomyopathy Type II Diabetes ANTI-AGING COSMETOLOGY Muscle Regeneration and Repair
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部