期刊文献+
共找到1,920篇文章
< 1 2 96 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:4
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
2
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Remote ischemic perconditioning prevents liver transplantation-induced ischemia/reperfusion injury in rats: Role of ROS/RNS and e NOS 被引量:19
3
作者 Ning He Jun-Jun Jia +10 位作者 Jian-Hui Li Yan-Fei Zhou Bing-Yi Lin Yi-Fan Peng Jun-Jie Chen Tian-Chi Chen Rong-Liang Tong Li Jiang Hai-Yang Xie Lin Zhou Shu-Sen Zheng 《World Journal of Gastroenterology》 SCIE CAS 2017年第5期830-841,共12页
AIM To investigate the underlying mechanisms of the protective role of remote ischemic perconditioning (RIPerC) in rat liver transplantation. METHODS Sprague-Dawley rats were subjected to sham, orthotopic liver transp... AIM To investigate the underlying mechanisms of the protective role of remote ischemic perconditioning (RIPerC) in rat liver transplantation. METHODS Sprague-Dawley rats were subjected to sham, orthotopic liver transplantation (OLT), ischemic postconditioning (IPostC) or RIPerC. After 3 h reperfusion, blood samples were taken for measurement of alanine aminotransferase, aspartate aminotransferase, creatinine (Cr) and creatinine kinase-myocardial band (CK-MB). The liver lobes were harvested for the following measurements: reactive oxygen species (ROS), H2O2, mitochondrial membrane potential (Delta psi m) and total nitric oxide (NO). These measurements were determined using an ROS/H2O2, JC1 and Total NOx Assay Kit, respectively. Endothelial NO synthase (eNOS) was analyzed by reverse transcription-polymerase chain reaction (RTPCR) and western blotting, and peroxynitrite was semiquantified by western blotting of 3-nitrotyrosine. RESULTS Compared with the OLT group, the grafts subjected to RIPerC showed significantly improved liver and remote organ functions (P < 0.05). ROS (P < 0.001) including H2O2 (P < 0.05) were largely elevated in the OLT group as compared with the sham group, and RIPerC (P < 0.05) reversed this trend. The collapse of Delta psi m induced by OLT ischemia/reperfusion (I/R) injury was significantly attenuated in the RIPerC group (P < 0.001). A marked increase of NO content and phosphoserine eNOS, both in protein and mRNA levels, was observed in liver graft of the RIPerC group as compared with the OLT group (P < 0.05). I/R-induced 3-nitrotyrosine content was significantly reduced in the RIPerC group as compared with the OLT group (P < 0.05). There were no significant differences between the RIPerC and IPostC groups for all the results except Cr. The Cr level was lower in the RIPerC group than in the IPostC group (P < 0.01). CONCLUSION Liver graft protection by RIPerC is similar to or better than that of IPostC, and involves inhibition of oxidative stress and up-regulation of the PI3K/Akt/eNOS/NO pathway. 展开更多
关键词 Liver transplantation ischemia/reperfusion injury Remote ischemic perconditioning Endothelial nitric oxide synthase Reactive oxygen species
下载PDF
Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury 被引量:6
4
作者 Timothy A Pritts Marshall H Montrose 《World Journal of Gastrointestinal Pathophysiology》 CAS 2010年第4期137-143,共7页
Intestinal ischemia is a severe disorder with a variety of causes.Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion(IR)may lead toeven ... Intestinal ischemia is a severe disorder with a variety of causes.Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion(IR)may lead toeven more serious complications from intestinal atrophy to multiple organ failure and death.The susceptibility of the intestine to IR-induced injury(IRI)appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation.Where as oxygen free radicals,activation of leukocytes,failure of microvascular perfusion,cellular acidosis and disturbance of intracellular homeo-stasis have been implicated as important factors inthe pathogenesis of intestinal IRI,the mechanisms underlying this disorder are not well known.To date,increasing attention is being paid in animal studies to potential pre-and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning.However,better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder.In this respect,the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance. 展开更多
关键词 ACIDOSIS INTESTINAL ischemIA/reperfusion injury In VIVO models ischemic POST-CONDITIONING
下载PDF
Flow cytometric analysis of circulating microvesicles derived from myocardial ischemic preconditioning and cardioprotection of ischemia/reperfusion injury in rats 被引量:3
5
作者 Miao LIU Yi-lu WANG +10 位作者 Man SHANG Yao WANG Qi ZHANG Shao-xun WANG Su WEI Kun-wei ZHANG Chao LIU Yan-na WU Ming-lin LIU Jun-qiu SONG Yan-xia LIU 《中国应用生理学杂志》 CAS CSCD 2015年第6期524-531,共8页
Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to i... Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to investigate the effects of IPC-MVs on ischemia/reperfusion(I/R) injury in rats. Methods: Myocardial IPC was elicited by three cycles of 5-min ischemia and 5-min reperfusion of the left anterior descending(LAD) coronary artery. Platelet-free plasma(PFP) was isolated through two steps of centrifugation at room temperature from the peripheral blood, and IPC-MVs were isolated by ultracentrifugation from PFP. PFP was incubated with anti-CD61, anti-CD144, anti-CD45 and anti-Erythroid Cells, and added 1, 2 μm latex beads to calibrate and absolutely count by flow cytometry. For functional research, I/R injury was induced by 30-min ischemia and 120-min reperfusion of LAD. IPC-MVs 7 mg/kg were infused via the femoral vein in myocardial I/R injured rats. Mean arterial blood pressure(MAP), heart rate(HR) and ST-segment of electrocardiogram(ECG) were monitored throughout the experiment. Changes of myocardial morphology were observed after hematoxylin-eosin(HE) staining. The activity of plasma lactate dehydrogenase(LDH) was tested by Microplate Reader. Myocardial infarct size was measured by TTC staining. Results: Total IPC-MVs and different phenotypes, including platelet-derived MVs(PMVs), endothelial cell-derived MVs(EMVs), leucocyte-derived MVs(LMVs) and erythrocyte-derived MVs(RMVs) were all isolated which were identified membrane vesicles(<1 μm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats(P<0.05, respectively). In addition, at the end of 120-min reperfusion in I/R injured rats, IPC-MVs markedly increased HR(P<0.01), decreased ST-segment and LDH activity(P<0.05, P<0.01). The damage of myocardium was obviously alleviated and myocardial infarct size was significantly lowered after IPC-MVs treatment(P<0.01). Conclusion: The method of flow cytometry was successfully established to detect the phenotypes and concentration alteration of IPC-MVs, including PMVs, EMVs, LMVs and RMVs. Furthermore, circulating IPC-MVs protected myocardium against I/R injury in rats. 展开更多
关键词 缺血/再灌注损伤 流式细胞仪分析 心肌梗死 缺血预处理 保护作用 大鼠 循环 微泡
下载PDF
Protective effect of ischemic preconditioning on hepatic ischemia-reperfusion injury by advancing the expressive phase of survivin in rats 被引量:2
6
作者 Li, Jian-Yi Gu, Xi +3 位作者 Yin, Hong-Zhuan Zhou, Yong Zhang, Wen-Hai Qin, Yi-Min 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2008年第6期615-620,共6页
BACKGROUND: Survivin is a new and important gene in the regulation of apoptosis. It is very important to explore the effect of the expression of survivin protein caused by ischemia-reperfusion (IR) injury. The effect ... BACKGROUND: Survivin is a new and important gene in the regulation of apoptosis. It is very important to explore the effect of the expression of survivin protein caused by ischemia-reperfusion (IR) injury. The effect of IR injury caused by ischemic preconditioning (IP) on the liver in rats and the relation between the protective effect of IP and the expression of survivin are unclear. METHODS: One hundred and fifty male Wistar rats (weighing 190-210 g, aged 6-7 weeks) were divided into three groups at random: ischemic preconditioning (IP), ischemia-reperfusion (IR) and sham-operation (SO). Sample specimens were collected from each group at 6, 12, 24, 48, and 72 hours after reperfusion. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by an automatic biochemical analyzer. Malondialdehyde (MDA) in liver tissue was measured. Pathological changes in the liver and immunohistochemical staining for survivin were determined with an optical microscope. RESULTS: The ALT levels in the IP and IR groups after reperfusion at each time were higher than those in the SO group (P<0.05), whereas after reperfusion for 6 and 12 hours, the ALT levels in the IP group were lower than those in the IR group (P<0.05). The AST levels in all IP and IR groups were higher than those in the SO group (P<0.05), whereas after reperfusion for 12, 24, 48 and 72 hours, the AST levels in the IP group were lower than those in the IR group (P<0.05). The MDA concentrations after reperfusion in the IP group were lower than those in the IR group (P<0.05), though the MDA concentrations in the IP and IR groups increased in contrast to those in the SO group after reperfusion at each time (P<0.05). After reperfusion for 12, 24, 48 and 72 hours, the number of survivin-positive cells was larger in the IP and IR groups than in the SO group (P<0.05). After reperfusion for 12, 24, and 48 hours the number of survivin-positive cells in the IP group increased compared with that in the IR group (P<0.05). CONCLUSIONS: IR increases the protein expression of survivin in liver tissue. IP inhibits the accumulation of MDA, advances the expressive phase of survivin protein in hepatic tissue, and improves liver function. 展开更多
关键词 ischemia-reperfusion injury ischemic preconditioning survivin protein
下载PDF
Protective Effect of Electroacupuncture and Ischemic Preconditioning on the Circulatory Function in Pigs with Ischemia/Reperfusion Myocardial Injury
7
作者 王祥瑞 郁勤燕 +1 位作者 阎军 孙大金 《Chinese Journal of Integrated Traditional and Western Medicine》 2003年第2期124-127,共4页
Objective: To investigate the effects of electroacupuncture and ischemic preconditioning (IPC) on circulatory function in pigs with myocardial ischemia/reperfusion injury. Method: Eighteen pigs with myocardial ischemi... Objective: To investigate the effects of electroacupuncture and ischemic preconditioning (IPC) on circulatory function in pigs with myocardial ischemia/reperfusion injury. Method: Eighteen pigs with myocardial ischemia/reperfusion injury were randomly allocated into three groups, 6 in each. Group I was the control group, group II was the group that received IPC, and group III was that received both electroacupuncture and IPC. Blood malondialdehyde (MDA), superoxide dismutase (SOD), creatine phos-phokinase (CPK) and its isoenzyme (CK-MB), coronary artery flow and myocardial heat-shock protein (HSP) mRNA expression were detected for evaluation. Results: After treatment, the MDA content was decreased and SOD activities increased significantly in the acupuncture and IPC group compared with the control group (P<0. 05 respectively). The levels of CPK, CK-MB at 20, 60 min after reperfusion were significantly higher than those before treatment, but the levels in group III and group n were remarkably lower than those in group I . HSP70 mRNA expression was found to be increased in group II and group III at 60 min after ischemia/reperfusion compared with those in group I . Conclusion: Electroacupuncture can enhance the myocardial protection of IPC against ischemia/reperfusion injury. The.protective mechanism may be related to the improvement of antioxidation and the increased expression of HSP70 gene. 展开更多
关键词 ELECTROACUPUNCTURE ischemia/reperfusion injury ischemic preconditioning MALONDIALDEHYDE superoxide dismutase
下载PDF
Changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children
8
作者 张宏家 《外科研究与新技术》 2003年第2期111-111,共1页
Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 ... Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 male, 15 female) undergoing correction of cardiac defects were divided into three groups randomly: group Ⅰ no myocardial ischemia,group Ⅱ myocardial ischemia less than 60 minutes, group Ⅲmyocardial ischemia 】 60 minutes. There were no significant differences in the three groups in age, sex ratio, C/T ratio, or left ventricular function. Blood samples for analysis were collected before skin incision and at time intervals up to 6 days postoperatively. Analysis of creatine kinase MB.LDH and cardiac-specific troponin I was used for the detection of myocardial damage. Meantime, the ECG was checked for myocardial infarction. After the reperfusion, myocardial tissue was obtained from the free wall of right ventricle myocardial structure studies. Results The level of cTnI was increased 展开更多
关键词 in of Changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children
下载PDF
Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke
9
作者 Shuai Feng Juanji Li +6 位作者 Tingting Liu Shiqi Huang Xiangliang Chen Shen Liu Junshan Zhou Hongdong Zhao Ye Hong 《Neural Regeneration Research》 SCIE CAS 2025年第2期491-502,共12页
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit... Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke. 展开更多
关键词 inflammation ischemia/reperfusion injury ischemic stroke low-density lipoprotein receptor neuroprotective astrocytes neurotoxic astrocytes NLRP3 inflammasome POLARIZATION
下载PDF
Stroke:Evolution of newer treatment modalities for acute ischemic stroke
10
作者 Deb Sanjay Nag Amlan Swain +3 位作者 Seelora Sahu Biswajit Sen Vatsala Sadiya Parween 《World Journal of Clinical Cases》 SCIE 2024年第28期6137-6147,共11页
Acute ischemic stroke is one of the leading causes of morbidity and mortality worldwide.Restoration of cerebral blood flow to affected ischemic areas has been the cornerstone of therapy for patients for eligible patie... Acute ischemic stroke is one of the leading causes of morbidity and mortality worldwide.Restoration of cerebral blood flow to affected ischemic areas has been the cornerstone of therapy for patients for eligible patients as early diagnosis and treatment have shown improved outcomes.However,there has been a paradigm shift in the management approach over the last decade,and with the emphasis currently directed toward including newer modalities such as neuroprotection,stem cell treatment,magnetic stimulation,anti-apoptotic drugs,delayed recanali-zation,and utilization of artificial intelligence for early diagnosis and suggesting algorithm-based management protocols. 展开更多
关键词 Acute ischemic stroke NEUROPROTECTION TREATMENT Neurocritical care Thrombolytic therapy reperfusion injury Oxidative stress
下载PDF
Hepatic ischemia-reperfusion injury in liver transplant setting:mechanisms and protective strategies 被引量:17
11
作者 Sanketh Rampes Daqing Ma 《The Journal of Biomedical Research》 CAS CSCD 2019年第4期221-234,共14页
Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure,and is of increasing significance due to increased use of expanded criteria livers for transplantation.This review summarizes the mechan... Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure,and is of increasing significance due to increased use of expanded criteria livers for transplantation.This review summarizes the mechanisms and protective strategies for hepatic ischemia-reperfusion injury in the context of liver transplantation.Pharmacological therapies,the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies.The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemia-reperfusion injury,and is an exciting and active area of research,which needs more study clinically. 展开更多
关键词 liver TRANSPLANTATION reperfusion injury mechanism THERAPEUTICS ischemic PRECONDITIONING
下载PDF
Inhibition of cerebral ischemia/reperfusion injuryinduced apoptosis:nicotiflorin and JAK2/STAT3 pathway 被引量:39
12
作者 Guang-qiang Hu Xi Du +3 位作者 Yong-jie Li Xiao-qing Gao Bi-qiong Chen Lu Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期96-102,共7页
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protec... Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway.The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion.Nicotiflorin(10 mg/kg) was administered by tail vein injection.Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase d UTP nick end labeling assay.Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining.Additionally,p-JAK2,p-STAT3,Bcl-2,Bax,and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay.Nicotiflorin altered the shape and structure of injured neurons,decreased the number of apoptotic cells,down-regulates expression of p-JAK2,p-STAT3,caspase-3,and Bax,decreased Bax immunoredactivity,and increased Bcl-2 protein expression and immunoreactivity.These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway. 展开更多
关键词 nerve regeneration brain injury nicotiflorin ischemic stroke cerebral ischemia/reperfusion injury treatment cell apoptosis terminal deoxynucleotidyl transferase dUTP nick end labeling JAK2/STAT3 pathway Bcl-2 Bax caspase-3 neural regeneration
下载PDF
Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair 被引量:24
13
作者 Zhen-qiang Zhang Jun-ying Song +1 位作者 Ya-quan Jia Yun-ke Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期435-440,共6页
Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/k... Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/kg,for 3 days.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.In rats administered Buyanghuanwu decoction,infarct volume was reduced,serum vascular endothelial growth factor and integrin αvβ3 levels were increased,and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals.These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor(administered through the lateral ventricle for 7 consecutive days).These data suggest that Buyanghuanwu decoction promotes angiogenesis,improves cerebral circulation,and enhances brain tissue repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration Buyanghuanwu decoction cerebral ischemia/reperfusion injury ischemic cerebrovascular disease integrin αvβ3 vascular endothelial growth factor angiogenesis CD34 neural regeneration
下载PDF
Heme oxygenase system in hepatic ischemia-reperfusion injury 被引量:14
14
作者 James A Richards Stephen J Wigmore Luke R Devey 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第48期6068-6078,共11页
Hepatic ischemia-reperfusion injury (IRI) limits access to transplantation. Heme oxygenase-1 (HO-1) is a powerful antioxidant enzyme which degrades free heme into biliverdin,free iron and carbon monoxide. HO-1 and its... Hepatic ischemia-reperfusion injury (IRI) limits access to transplantation. Heme oxygenase-1 (HO-1) is a powerful antioxidant enzyme which degrades free heme into biliverdin,free iron and carbon monoxide. HO-1 and its metabolites have the ability to modulate a wide variety of inflammatory disorders including hepatic IRI. Mechanisms of this protective effect include reduction of oxygen free radicals,alteration of macrophage and T cell phenotype. Further work is required to understand the physiological importance of the many actions of HO-1 identified experimentally,and to harness the protective effect of HO-1 for therapeutic potential. 展开更多
关键词 ischemIA-reperfusion injury HEME OXYGENASE TRANSPLANTATION ischemic PRE-CONDITIONING
下载PDF
Preconditioning and postconditioning reduce hepatic ischemia-reperfusion injury in rats 被引量:16
15
作者 Zhang, Wan-Xing Yin, Wen +5 位作者 Zhang, Lei Wang, Lan-Hui Bao, Lei Tuo, Hong-Fang Zhou, Li-Fang Wang, Chun-Cheng 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2009年第6期586-590,共5页
BACKGROUND: Ischemia-reperfusion injury occurs when ischemic tissues or organs suffer from further functional and structural damage when their blood supply recovers. This study aimed to contrast the protective effects... BACKGROUND: Ischemia-reperfusion injury occurs when ischemic tissues or organs suffer from further functional and structural damage when their blood supply recovers. This study aimed to contrast the protective effects of ischemic preconditioning and ischemic postconditioning in hepatic ischemia-reperfusion injury in rats. METHODS: Thirty-two healthy male Wistar rats were randomly divided into four groups: sham-operated (SO), ischemia-reperfusion (IR), ischemic preconditioning (I-pre), and ischemic postconditioning (I-post). Blood samples and hepatic tissue were taken from all groups after the experiments. RESULTS: There were significant differences between the IR, I-pre and I-post groups in alanine aminotransferase and aspartate aminotransferase levels, NF-kappa B p65 expression, apoptosis index and superoxide dismutase activity in hepatic tissue. There were no significant differences between the I-pre and I-post groups. CONCLUSIONS: Ischemic postconditioning and ischemic preconditioning reduce hepatic ischemia-reperfusion injury, but in clinical practice the former is a more appropriate choice. 展开更多
关键词 LIVER ischemia-reperfusion injury ischemic postconditioning ischemic preconditioning NF-kappa B
下载PDF
microRNA-455-5p alleviates neuroinflammation in cerebral ischemia/reperfusion injury 被引量:4
16
作者 Jian-Song Zhang Pin-Pin Hou +8 位作者 Shuai Shao Anatol Manaenko Zhi-Peng Xiao Yan Chen Bing Zhao Feng Jia Xiao-Hua Zhang Qi-Yong Mei Qin Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第8期1769-1775,共7页
Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion.Downregulation of microRNA(miR)-455-5p after ischemic stroke has been consider... Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion.Downregulation of microRNA(miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia.However,the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated.In this study,mouse models of cerebral ischemia/reperfusion injury were established by transient occlusion of the middle cerebral artery for 1 hour followed by reperfusion.Agomir-455-5p,antagomir-455-5p,and their negative controls were injected intracerebroventricularly 2 hours before or 0 and 1 hour after middle cerebral artery occlusion(MCAO).The results showed that cerebral ischemia/reperfusion decreased miR-455-5p expression in the brain tissue and the peripheral blood.Agomir-455-5p pretreatment increased miR-455-5p expression in the brain tissue,reduced the cerebral infarct volume,and improved neurological function.Furthermore,primary cultured microglia were exposed to oxygen-glucose deprivation for 3 hours followed by 21 hours of reoxygenation to mimic cerebral ischemia/reperfusion.miR-455-5p reduced C-C chemokine receptor type 5 mRNA and protein levels,inhibited microglia activation,and reduced the production of the inflammatory factors tumor necrosis factor-αand interleukin-1β.These results suggest that miR-455-5p is a potential biomarker and therapeutic target for the treatment of cerebral ischemia/reperfusion injury and that it alleviates cerebral ischemia/reperfusion injury by inhibiting C-C chemokine receptor type 5 expression and reducing the neuroinflammatory response. 展开更多
关键词 agomiR-455-5p biomarker blood-brain barrier C-C chemokine receptor type 5 ischemia/reperfusion injury ischemic stroke MICROGLIA microRNA-455-5p NEUROINFLAMMATION PRETREATMENT
下载PDF
The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus 被引量:8
17
作者 Bo Zhao Wen-wei Gao +5 位作者 Ya-jing Liu Meng Jiang Lian Liu Quan Yuan Jia-bao Hou Zhong-yuan Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1632-1639,共8页
Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role o... Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear.In this study,we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats.Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin.Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery.Post-conditioning comprised three cycles of ischemia/reperfusion.Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion,the structure of the brain was seriously damaged in the experimental rats compared with normal controls.Expression of Bax,interleukin-6,interleukin-8,terminal deoxynucleotidyl transferase d UTP nick end labeling,and cleaved caspase-3 in the brain was significantly increased,while expression of Bcl-2,interleukin-10,and phospho-glycogen synthase kinase 3 beta was decreased.Diabetes mellitus can aggravate inflammatory reactions and apoptosis.Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes.Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glycogen synthase kinase 3 beta.According to these results,glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration myocardial ischemia/reperfusion injury brain injury glycogen synthase kinase 3 beta ischemic post-conditioning diabetes mellitus neural regeneration
下载PDF
Induction of Autologous Bone-Marrow Stem Cells by Low-Level Laser Therapy Has Beneficial Effects on the Kidneys Post-Ischemia-Reperfusion Injury in the Rat 被引量:1
18
作者 Hana Tuby Lidya Maltz Uri Oron 《Journal of Biomedical Science and Engineering》 2014年第8期453-463,共11页
Acute renal failure has a 50% - 80% mortality rate. Currently, treatment options for this life-threatening disease are limited. Low-level laser therapy (LLLT) has been found to modulate biological activity. The aim of... Acute renal failure has a 50% - 80% mortality rate. Currently, treatment options for this life-threatening disease are limited. Low-level laser therapy (LLLT) has been found to modulate biological activity. The aim of the present study was to investigate the possible beneficial effects of laser application to stem cells in the bone marrow, on the kidneys of rats that had undergone ischemia-reperfusion injury (IRI). IRI was induced by occlusion of the renal artery to 3- and 7-month-old rats for 15 or 30 minutes. In an additional experiment IRI was applied to both kidneys for 20 min each in 2-3-month-old rats. Rats were then divided randomly into two groups of control and laser-treated. Laser therapy (Ga-Al-As 810 nm, 200 mW output for 2 min) was applied to the bone marrow 1 and 7 days post-IRI to the kidneys, and rats were sacrificed 2 weeks later. Histomorphometry and immunohistochemistry were performed on kidney sections and blood markers for kidney function. Quantitative histomorphometric analysis revealed a reduction in dilatation of the renal tubules, restored structural integrity of the renal tubules, and reduced necrosis in the laser-treated rats as compared to the control, non-laser-irradiated group. C-kit positive cell density in kidneys post-IRI and laser-treatment was significantly (p = 0.015) 3.2-fold higher compared to the control group. Creatinine and blood urea nitrogen content were significantly lower in the laser-treated rats as compared to control. It is concluded that LLLT application to the bone marrow (BM) causes a significant increase in the density of mesenchymal stem cells in the kidneys post-IRI, probably by induction of stem cells in the BM, which subsequently migrate to the IRI kidney, significantly reducing the pathological features of the kidney and increasing kidney function post IRI. 展开更多
关键词 Kidney Mesenchymal Stem Cells (MSCs) Low-Level Laser Therapy (LLLT) ischemIA-reperfusion injury (iri)
下载PDF
High frequency electrical field-ultrashort wave therapy for treatment of cerebral ischemia/reperfusion injury in rats Histopathological evaluation
19
作者 Lixin Zhang Zhiqiang Zhang +2 位作者 Weidi Liang Lin Li Xiuhua Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第5期271-275,共5页
BACKGROUND: Ultrashortwave (USW) therapy may be a new method for treatment of ischemic cerebrovascular diseases. It is necessary to study its treatment time window. OBJECTIVE: To observe the effect of USW on reper... BACKGROUND: Ultrashortwave (USW) therapy may be a new method for treatment of ischemic cerebrovascular diseases. It is necessary to study its treatment time window. OBJECTIVE: To observe the effect of USW on reperfusion injury after occlusion of the middle cerebral artery (MCAO) in rats and discuss its acting mechanisms and best occasion. DESIGN: Randomized controlled observation, animal experiment. SETTING: Laboratory of Department of Rehabilitation Medicine, First Hospital Affiliated to China Medical University. MATERIALS: Sixty-six healthy Wistar rats of either gender and of clean grade, aged 18–20 weeks, weighing from 250 to 300 g, were provided by the Experimental Animal Center of China Medical University. An USW device (Shanghai Electrical Device Company) with the frequency of 40.68 MHz and the maximum output power of 40 W, and the first channel power controlled at about 11 W was used in this study. Output power was determined by photometry. METHODS: Sixty-six rats were randomly divided into 3 groups: Sham-operation group (n =6): The suture was inserted only 1.0 depth during operation, which did not cause MACO; Model group (n =12): The USW treatment procedure was performed with the power off on the model rats; USW treatment group (n =48): The 48 rats were randomly divided into modeling 0, 6, 12 and 18 hours 4 subgroups. USW therapy without heat was used on the head of rats for 10 minutes at each time point. Twelve rats in USW treatment group were decapitated following treatment at each time point, and then their brain tissues were harvested. The rat brain tissues in other groups were harvested by decapitation at 24 hours after modeling. When the rats were awake, the neurologic deficit was scored by Zea-Longa five-point scale (a score of 0 indicated no neurologic deficit, a score of 1 indicated failure to extend left paw fully, a score of 2 indicated circling to the left, and a score of 3 indicated falling to the left, and rats with a score of 4 did not walk spontaneously and has a depressed level of consciousness.) Rats which still survived at 24 hours and was scored 1 and 2 on the neurologic scoring were involved in the analysis. ① Determination of cerebral water content: Cerebral water contents of healthy and injured hemisphere were determined by wet/dry weighing method. Cerebral water content (100%) =(1–dry/wet weight)×100%.②Infarction volume: The brain tissue was sliced into 2 mm sections and each section was stained with 20 g/L 2,3,5-triphenyltetrazolium chloride (TTC) by TTC staining technique for 30 minutes in a water bath at 37 ℃.Then, the section was fixed in 100 g/L formaldehyde for 10 minutes .The infarction volume was analyzed by using an imaging analyzer.③ Preparation of light microscopic sample: The rat brain tissue fixed by 100 g/L neutral formaldehyde and stained with TTC, were gradiently dehydrated with alcoholic, embedded with paraffin, sliced and stained by HE, finally, the sections were observed under the light microscope. MAIN OUTCOME MEASURES: Cerebral water content, cerebral infarction volume and cerebral histomorphology of rats in each group. RESULTS: Sixty-six rats were involved in the final analysis. ①Cerebral water content: There were no significant differences of cerebral water content in healthy hemisphere among groups (P 〉 0.05). Cerebral water content of injured hemisphere in the model group and at modeling 0, 6, 12 and 18 hours in the USW treatment group was (81.50±0.74) %, (81.02±0.83) %, (79.78±0.70) %, (79.74±0.84) %, (79.39± 1.06) %, respectively, which was significantly higher than that in the sham-operation group [(78.09±0.52) %, P 〈 0.05]. At modeling 0, 6 and 12 hours, the cerebral water content in the injured hemisphere in the USW treatment group was significantly lower than that in the model group, respectively (P 〈 0.05). It indicatedthat USW treatment given at 6, 12 and 18 hours after ischemia/reperfusion can lessen brain edema. ② Cerebral infarction volume: At modeling 18 hours, cerebral infarction volume in the injured hemisphere of USW treatment group was smaller than that in the model group [(191.62±121.45),(362.03±142.01)mm3, t =2.23,P 〈 0.05]. ③ Cerebral histomorphological observation: No swelling was found in the brain tissue section of rats in the sham-operation group. In the model group, the size of infarction hemisphere was obviously increased, gyrus became flattened, cortical sulci was shallow, the color at infarct focus obviously became light, and the tissue was fragile and brittle. In the sham-operation group, it was found under the microscope that mesenchyma was highly swelled, neuronal peripheral interspace was obviously broadened, neurons presented triangle, nucleoli were reduced, condensed even disappeared, and neutrophils in the vascular cavity were obviously increased. In the USW treatment group, pathological injury was not obviously lessened at 0 hour, moderate or mild edema could be found in the injured hemisphere of USW treatment group at modeling 6,12 and 18 hours, and at this time, neutrophils in vascular cavity were increased slightly, and pathological injuries were lessened. CONCLUSION: USW may play a protective effect on cerebral ischemia/reperfusion injury by decreasing brain edema and/or cerebral infarction volume. The treatment action of USW may start at 6 hours after reperfusion, and the best occasion of application may be at 18 hours after reperfusion. 展开更多
关键词 ischemic cerebrovascular disease ultrashort wave reperfusion injury brain edema
下载PDF
miR-21-3p alleviates neuronal apoptosis during cerebral ischemiareperfusion injury by targeting SMAD2
20
作者 FEI TIAN GANG LIU +2 位作者 LINLIN FAN ZHONGYUN CHEN YAN LIANG 《BIOCELL》 SCIE 2021年第1期49-56,共8页
Cerebral ischemia is due to the formation of blood clots or embolisms in the brain arteries,which leads to local brain tissue necrosis and neural cell apoptosis.Recent studies have shown that microRNA(miRNA)plays an i... Cerebral ischemia is due to the formation of blood clots or embolisms in the brain arteries,which leads to local brain tissue necrosis and neural cell apoptosis.Recent studies have shown that microRNA(miRNA)plays an important regulatory role in the pathological process of ischemic injury.The aim of this study is to investigate the role and the mechanism of miR-21-3p and drosophila mothers against decapentaplegic 2(SMAD2)in cerebral ischemic reperfusion injured(CIRI)neural cells.The CIRI model was established by oxygen-glucose deprivation and recovery process for N2a cells.The cell viability and the apoptotic was evaluated by MTT assay and the Flow Cytometer,respectively.The expression of miR-21-3p and SMAD2 mRNA was detected by real-time fluorescence quantitative PCR(qRT-PCR),and the expression of SMAD2 and apoptotic-related proteins were detected by Western Blotting.Our results showed that miR-21-3p is down-regulated,and SMAD2 is up-regulated in CIRI.Overexpression of miR-21-3p inhibits the apoptosis of neural cells in CIRI.miR-21-3p targets SMAD2 and inhibits SMAD2 expression.Overexpression of SMAD2 eliminates the protective effect of over-expression of miR-21-3p on neural cells in CIRI.Token together,this study provides a theoretical basis for the mechanism of ischemic reperfusion injury in neural cells and a new molecular target for ischemic stroke therapy. 展开更多
关键词 ischemic stroke ischemic reperfusion injury Neural cells MICRORNA-21 SMAD2 Apoptosis
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部