BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis...BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.展开更多
Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupf...Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells.Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells.Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.展开更多
Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate...Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.展开更多
Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra...Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.展开更多
Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed t...Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.展开更多
Background Atresia and degeneration,a follicular developmental fate that reduces female fertility and is triggered by granulosa cell(GC)apoptosis,have been induced by dozens of miRNAs.Here,we report a miRNA,miR-423,th...Background Atresia and degeneration,a follicular developmental fate that reduces female fertility and is triggered by granulosa cell(GC)apoptosis,have been induced by dozens of miRNAs.Here,we report a miRNA,miR-423,that inhibits the initiation of follicular atresia(FA),and early apoptosis of GCs.Results We showed that miR-423 was down-regulated during sow FA,and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo.The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis,especially early apoptosis in GCs.Mechanically speaking,the miR-423 targets and interacts with the 3’-UTR of the porcine SMAD7 gene,which encodes an apoptosis-inducing factor in GCs,and represses its expression and pro-apoptotic function.Interestingly,FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423.Additionally,we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths(NSB)trait of sows.Conclusion These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis,suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.展开更多
Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is...Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.展开更多
Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition ...Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.展开更多
With an aim to comprehend the precise regulatory mechanism of dioscin against endometrial carcinoma(EC), we firstly extracted the components from Polygonatum sibiricum followed by identification and structural charact...With an aim to comprehend the precise regulatory mechanism of dioscin against endometrial carcinoma(EC), we firstly extracted the components from Polygonatum sibiricum followed by identification and structural characterization. The anti-EC activity of dioscin was initially determined based on the inhibition of Ishikawa cell proliferation and tumor growth. The high-throughput sequencing data indicated that dioscin not only promoted apoptosis, including decrease of poly ADP-ribose polymerase(PARP) and B-cell lymphoma-2(Bcl-2) and increase of c-PARP and Bcl-2-associcated agonist of cell death(Bad), but also induced autophagy, including increase of autophagic lysosomes and LC3Ⅱ/LC3Ⅰ ratio. Mechanistic exploration suggested that dioscin induced autophagy and apoptosis through inhibition of PI3K/AKT/mTOR signaling pathway. Besides, the dioscin-regulated p53 pathway was mainly involved in autophagy induction. Furthermore, inhibition of Ishikawa cell autophagy was linked to dioscin-induced apoptosis. Our data suggest the immense potential of dioscin for the development of functional food for EC and related medical application.展开更多
Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:...Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,flow cytometry,and western blotting assays were carried out to assess cell viability,subG1 phase of the cell cycle,and apoptosis-related protein expression,respectively.Results:Ourfindings indicate that paclitaxel could inhibit cell viability and increase the expression of apoptotic markers,including plasma membrane blebbing and the cleavage of poly ADP-ribose polymerase in KOSC3 cells.Also,the treatment with paclitaxel remarkably elevated the percentage of the subG1 phase in KOSC3 cells.In addition,treatment with a pan-caspase inhibitor could recover paclitaxel-inhibited cell viability.Moreover,caspase-8,caspase-9,caspase-7,and BH3 interacting domain death agonist(Bid)were activated in paclitaxel-treated KOSC3 cells.Conclusions:Paclitaxel induced apoptosis through caspase cascade in KOSC3 cells.展开更多
Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential ...Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.展开更多
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de...Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection can cause extensive apoptosis of gastric epithelial cells,serving as a critical catalyst in the progression from chronic gastritis,gastrointestinal metaplasia,and atyp...BACKGROUND Helicobacter pylori(H.pylori)infection can cause extensive apoptosis of gastric epithelial cells,serving as a critical catalyst in the progression from chronic gastritis,gastrointestinal metaplasia,and atypical gastric hyperplasia to gastric carcinoma.Prompt eradication of H.pylori is paramount for ameliorating the pathophysiological conditions associated with chronic inflammation of the gastric mucosa and the primary prevention of gastric cancer.Acacetin,which has multifaceted pharmacological activities such as anti-cancer,anti-inflammatory,and antioxidative properties,has been extensively investigated across various domains.Nevertheless,the impact and underlying mechanisms of action of acacetin on H.pylori-infected gastric mucosal epithelial cells remain unclear.AIM To explore the defensive effects of acacetin on apoptosis in H.pylori-infected GES-1 cells and to investigate the underlying mechanisms.METHODS GES-1 cells were treated with H.pylori and acacetin in vitro.Cell viability was assessed using the CCK-8 assay,cell mortality rate via lactate dehydrogenase assay,alterations in cell migration and healing capacities through the wound healing assay,rates of apoptosis via flow cytometry and TUNEL staining,and expression levels of apoptosis-associated proteins through western blot analysis.RESULTS H.pylori infection led to decreased GES-1 cell viability,increased cell mortality,suppressed cell migration,increased rate of apoptosis,increased expressions of Bax and cle-caspase3,and decreased Bcl-2 expression.Conversely,acacetin treatment enhanced cell viability,mitigated apoptosis induced by H.pylori infection,and modulated the expression of apoptosis-regulatory proteins by upregulating Bcl-2 and downregulating Bax and cleaved caspase-3.CONCLUSION Acacetin significantly improved GES-1 cell viability and inhibited apoptosis in H.pylori-infected GES-1 cells,thereby exerting a protective effect on gastric mucosal epithelial cells.展开更多
[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted...[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted microscope observation,hoechst33342 staining,flow cytometry(FCM)and wound healing assay were adopted to investigate the proliferation,morphological changes,apoptosis level and cell migration ability of human breast cancer MCF-7 cells,respectively.[Results]The morphological changes of cells in the treatment groups included gradually decreased number,reduced volume,vague cell contour,loose intercellular connection,uneven cytoplasm distribution and increased cell debris.With the increase of drug concentration,quercetin significantly inhibited the proliferation of human breast cancer MCF-7 cells(P<0.05).The number of apoptotic bodies increased gradually.When the concentration reached 100μmol/L,a large number of nuclear fragments appeared,and the level of apoptosis was statistically different(P<0.05).The mobility and migration ability of cells showed a decreasing trend,and the differences were statistically significant(P<0.05).[Conclusions]This study can provide experimental basis for clinical application of quercetin against breast cancer.展开更多
AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing end...AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.展开更多
Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CC...Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.展开更多
The roles of NF-kappaB (NF-κB) expression, Bax activity and cytochrome C (Cyt C) release, apoptosis of islet cells induced by high concentration glucose were explored in vitro. Pancreatic islet cells, which were ...The roles of NF-kappaB (NF-κB) expression, Bax activity and cytochrome C (Cyt C) release, apoptosis of islet cells induced by high concentration glucose were explored in vitro. Pancreatic islet cells, which were isolated from Kunming mice, were cultured with different concentrations of glucose in DMEM, and divided into the following groups: G1, G2, G3, G4, G5, and G6 groups, corresponding to the glucose concentrations of 5.6, 7.8, 11.1, 16.7, 22.5, and 27.6 mmol/L, respectively. After culture for 120 h, insulin secretion was evaluated by radioimmunoassay, and the NF-rd3 expression was detected by immunocytochemistry. Bax activity and Cyt C release were measured by immunofluorescence, and apoptosis was examined by Hoechst33342 assay. The results showed that in GI, G2 and G3 groups, insulin secretion was enhanced with the increase of glucose concentration, and the NF-κB expression was also increased (P〈0.05), but Bax activity, Cyt C release and apoptosis rate showed no significant difference among them. However, in G4, G5, and G6 groups, apoptosis rate of islet cells, NF-rd3 expression, Bax activity, and Cyt C release were all significantly increased, and insulin secretion was impaired as compared with G1, G2, and G3 groups (P〈0.05). It was concluded that the exposure of islet cells to high glucose could induce islet cells apoptosis as well as impaired insulin secretion. The NF-κB signaling pathway and mitochondria pathway in islet cells might play some roles in the progressive loss of islet cells in diabetes. The inhibition of the NF-κB expression could be an effective strategy for protecting pancreatic islet cells.展开更多
Objective:To study the effect of mechanism of high glucose on apoptosis and cell cycle arrest of isletβcells via p27 pathway.Methods:Islet INS-1 cells were cultured and divided into groups.The control group was treat...Objective:To study the effect of mechanism of high glucose on apoptosis and cell cycle arrest of isletβcells via p27 pathway.Methods:Islet INS-1 cells were cultured and divided into groups.The control group was treated with ordinary medium,the high glucose group was treated with high glucose medium containing 25mmol/L glucose,the high glucose+si-NC group was treated with high glucose medium and transfected with NC siRNA,and the high glucose+si-P27 group was treated with high glucose medium and transfected with p27 siRNA.After 24 hours treatment,MTS assay was used to detect the cell viability A490,TUNEL assay was used to detect apoptosis rate,flow cytometry was used to detect the cell cycle distribution and western blot was used to detect the expression levels of P27,caspase-8 and cyclinD1.Results:Compared with those in the control group,the A490,the ratio of S phase and G2/M phase as well as the expression level of CyclinD1 decreased,while the apoptosis rate,the ratio of G0/G1 phase as well as the expression levels of P27 and caspase-8 increased in the high glucose group(P<0.05);compared with those in the high glucose group,the A490,cell cycle as well as the expression levels of P27,caspase-8 and cyclinD1 were not different from those in the high glucose+si-NC group(P>0.05);compared with those in the high glucose group and high glucose+si-NC group,the A490,the ratio of S phase and G2/M phase as well as the expression levels of cyclinD1 increased,while the apoptosis rate,the ratio of G0/G1 phase as well as the expression levels of p27 and caspase-8 decreased in the high glucose+si-P27 group(P<0.05).Conclusion:The apoptosis and cell cycle arrest induced by high glucose are related to P27 pathway activation.展开更多
Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of ...Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.展开更多
Inhibin a is one of the candidate genes that control the ovulation in poultry. To study the genetic effects of inhibin a on apoptosis and proliferation of goose granulosa cells cultured in vitro, two RNA interference ...Inhibin a is one of the candidate genes that control the ovulation in poultry. To study the genetic effects of inhibin a on apoptosis and proliferation of goose granulosa cells cultured in vitro, two RNA interference (RNAi) expression vectors, psiRNA-INHal and psiRNA-INHα2, were constructed to knock down inhibin α gene expression. After 48 h of transfection, the efficiency of these two RNAi expression vectors was examined by fluorescence microscopy. Meanwhile, inhibin protein expression levels, apoptosis indexes (AI) and proliferation indexes (PI) of granulosa cells were analyzed by flow cytometry. In addition, the supernatants were collected to assay the concentrations of estrogen (E2) and progesterone (P) by radioimmunoassay. The results showed that the expression level of inhibin a in the RNAi group were decreased 30%--40% than those in the control groups (P 〈0.05) and the apoptosis indexes and proliferation indexes in the RNAi groups were significantly higher than those in the control groups (P 〈0.05). However, the E2 concentrations in the RNAi groups were lower than those in the control groups (P 〈0.05). These results indicate that inhibin a has antagonistic effect on granulosa cell apoptosis.展开更多
基金the Key Research and Development Program of Shaanxi,No.2021SF-227 and No.2020SF-297the Natural Science Basic Research Program of Shaanxi,No.2023-JC-YB-770。
文摘BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.
文摘Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells.Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells.Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.
基金This work was supported by grants from the National Natural Science Foundation of China(52072005 and 51872279).
文摘Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.
基金supported by the National Natural Science Foundation of China(32272849)the National Key R&D Program of China(2021YFF1000602)the earmarked fund for CARS-35-PIG。
文摘Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.
基金supported by Shahrekord University of Medical Sciences,Shahrekord,Iran(Ethics Code:IR.SKUMS.REC.1397.119,Grant No.3696 and Ethics Code:IR.SKUMS.REC.1401.197,Grant No.6651).
文摘Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.
基金supported by the National Key R&D Program of China(2022YFD1600903)the National Natural Science Foundation of China(32072693)the College Students’Innovative Entrepreneurial Training Plan Program(202110307028).
文摘Background Atresia and degeneration,a follicular developmental fate that reduces female fertility and is triggered by granulosa cell(GC)apoptosis,have been induced by dozens of miRNAs.Here,we report a miRNA,miR-423,that inhibits the initiation of follicular atresia(FA),and early apoptosis of GCs.Results We showed that miR-423 was down-regulated during sow FA,and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo.The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis,especially early apoptosis in GCs.Mechanically speaking,the miR-423 targets and interacts with the 3’-UTR of the porcine SMAD7 gene,which encodes an apoptosis-inducing factor in GCs,and represses its expression and pro-apoptotic function.Interestingly,FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423.Additionally,we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths(NSB)trait of sows.Conclusion These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis,suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
基金supported by the Science and Technology Innovation Program of Hunan Province(Grant Numbers:2021SK1014 and 2022WZ1027)the Colleges and Universities of Hunan Province(Grant Number:HNJG 20200440)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant Number:21B0411)the Scientific Research Project of Changsha Central Hospital(Number:YNKY202201).
文摘Background:Nasopharyngeal carcinoma(NPC)exhibits a significant prevalence in the southern regions of China,and paclitaxel(PTX)is frequently employed as a medication for managing advanced NPC.However,drug resistance is typically accompanied by a poor prognosis.Exploring the synergistic potential of combining multiple chemotherapeutic agents may represent a promising avenue for optimizing treatment efficacy.Methods:This study investigated whether 3-Methyladenine(3-MA)could potentiated the effect of PTX and its potential molecular mechanism.Samples were divided into the following categories:Negative control(NC)with the solvent dimethyl sulfoxide(DMSO,0.5%v/v),PTX(400 nM),3-MA(4 mM),and PTX(400 nM)+3-MA(4 mM).The viability of NPC cells was assessed using both the cell counting kit-8(CCK-8)assay and the colony formation assay.Microscopic observation was performed to identify morphological cell changes.Flow cytometry was used to assess cell cycle status,mitochondrial membrane potential(MMP),and apoptotic cells.Western blotting was conducted to quantify the protein expression.Results:3-MA enhanced PTX-specific inhibition of NPC cell proliferation.PTX,either alone or in combination with 3-MA,caused cell cycle halt at the G2/M phase in the majority of NPC cells,and the combination treatment of PTX with 3-MA induced a higher rate of NPC cell death compared to PTX alone.Western blotting results revealed the combination of PTX with 3-MA heightened activation of cyclin-dependent kinase 1(CDK1),a key molecule in shifting cells from mitotic arrest to apoptosis,led to a reduction in Myeloid Cell Leukemia 1(MCL-1)expression and an increase in Poly(ADP-ribose)polymerase(PARP)cleavage.Conclusion:The concurrent administration of PTX with 3-MA effectively enhances PTX’s inhibitory impact on NPC and activates the apoptosis signal regulated by CDK1.
基金funded by the GRRC Program of Gyeonggi province[GRRC-KyungHee2023(B01)],Republic of Korea.
文摘Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.
基金supported by the National Key Research&Development Program of China(2022YFF1100305)the National Natural Science Foundation of Ningxia Province(2021AAC02019,2022AAC03230)the Key research and development projects in Ningxia province(2021BEF02013).
文摘With an aim to comprehend the precise regulatory mechanism of dioscin against endometrial carcinoma(EC), we firstly extracted the components from Polygonatum sibiricum followed by identification and structural characterization. The anti-EC activity of dioscin was initially determined based on the inhibition of Ishikawa cell proliferation and tumor growth. The high-throughput sequencing data indicated that dioscin not only promoted apoptosis, including decrease of poly ADP-ribose polymerase(PARP) and B-cell lymphoma-2(Bcl-2) and increase of c-PARP and Bcl-2-associcated agonist of cell death(Bad), but also induced autophagy, including increase of autophagic lysosomes and LC3Ⅱ/LC3Ⅰ ratio. Mechanistic exploration suggested that dioscin induced autophagy and apoptosis through inhibition of PI3K/AKT/mTOR signaling pathway. Besides, the dioscin-regulated p53 pathway was mainly involved in autophagy induction. Furthermore, inhibition of Ishikawa cell autophagy was linked to dioscin-induced apoptosis. Our data suggest the immense potential of dioscin for the development of functional food for EC and related medical application.
基金The present study was supported by the National Science and Technology Council,Taiwan(MOST-107-2320-B-471-001 to YYL and MOST-110-2320-B-006-025-MY3 to BMH)by An Nan Hospital(ANHRF111-55 to TCC and BMH).
文摘Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,flow cytometry,and western blotting assays were carried out to assess cell viability,subG1 phase of the cell cycle,and apoptosis-related protein expression,respectively.Results:Ourfindings indicate that paclitaxel could inhibit cell viability and increase the expression of apoptotic markers,including plasma membrane blebbing and the cleavage of poly ADP-ribose polymerase in KOSC3 cells.Also,the treatment with paclitaxel remarkably elevated the percentage of the subG1 phase in KOSC3 cells.In addition,treatment with a pan-caspase inhibitor could recover paclitaxel-inhibited cell viability.Moreover,caspase-8,caspase-9,caspase-7,and BH3 interacting domain death agonist(Bid)were activated in paclitaxel-treated KOSC3 cells.Conclusions:Paclitaxel induced apoptosis through caspase cascade in KOSC3 cells.
文摘Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.
基金funded by the Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences(Nos.CI2021A04618 and CI2021A01401).
文摘Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.
基金Supported by the Doctoral Research Initiation Fund of Affiliated Hospital of Southwest Medical University,No.21037.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection can cause extensive apoptosis of gastric epithelial cells,serving as a critical catalyst in the progression from chronic gastritis,gastrointestinal metaplasia,and atypical gastric hyperplasia to gastric carcinoma.Prompt eradication of H.pylori is paramount for ameliorating the pathophysiological conditions associated with chronic inflammation of the gastric mucosa and the primary prevention of gastric cancer.Acacetin,which has multifaceted pharmacological activities such as anti-cancer,anti-inflammatory,and antioxidative properties,has been extensively investigated across various domains.Nevertheless,the impact and underlying mechanisms of action of acacetin on H.pylori-infected gastric mucosal epithelial cells remain unclear.AIM To explore the defensive effects of acacetin on apoptosis in H.pylori-infected GES-1 cells and to investigate the underlying mechanisms.METHODS GES-1 cells were treated with H.pylori and acacetin in vitro.Cell viability was assessed using the CCK-8 assay,cell mortality rate via lactate dehydrogenase assay,alterations in cell migration and healing capacities through the wound healing assay,rates of apoptosis via flow cytometry and TUNEL staining,and expression levels of apoptosis-associated proteins through western blot analysis.RESULTS H.pylori infection led to decreased GES-1 cell viability,increased cell mortality,suppressed cell migration,increased rate of apoptosis,increased expressions of Bax and cle-caspase3,and decreased Bcl-2 expression.Conversely,acacetin treatment enhanced cell viability,mitigated apoptosis induced by H.pylori infection,and modulated the expression of apoptosis-regulatory proteins by upregulating Bcl-2 and downregulating Bax and cleaved caspase-3.CONCLUSION Acacetin significantly improved GES-1 cell viability and inhibited apoptosis in H.pylori-infected GES-1 cells,thereby exerting a protective effect on gastric mucosal epithelial cells.
基金Guilin Scientific Research and Technology Development Program(20210202-120220104-4)Special Project of the Central Government in Guidance of Local Science and Technology Development(ZY20230102).
文摘[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted microscope observation,hoechst33342 staining,flow cytometry(FCM)and wound healing assay were adopted to investigate the proliferation,morphological changes,apoptosis level and cell migration ability of human breast cancer MCF-7 cells,respectively.[Results]The morphological changes of cells in the treatment groups included gradually decreased number,reduced volume,vague cell contour,loose intercellular connection,uneven cytoplasm distribution and increased cell debris.With the increase of drug concentration,quercetin significantly inhibited the proliferation of human breast cancer MCF-7 cells(P<0.05).The number of apoptotic bodies increased gradually.When the concentration reached 100μmol/L,a large number of nuclear fragments appeared,and the level of apoptosis was statistically different(P<0.05).The mobility and migration ability of cells showed a decreasing trend,and the differences were statistically significant(P<0.05).[Conclusions]This study can provide experimental basis for clinical application of quercetin against breast cancer.
基金Supported by National Natural Science Foundation for Young Scientists of China(No.82101097)National Natural Science Foundation of China(No.82070937).
文摘AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.
基金National Natural Science Foundation of China(No.81860709)Baise City Science and Technology Plan Project(No.Encyclopedia 20224139,Encyclopedia 20211807)2023 Youjiang Ethnic Medical College Graduate Innovation Program Project(No.YXCXJH2023013)。
文摘Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.
基金supported by the grants from GuangxiSciences foundation(No.0542083)Chunhui Program of theNational Education Ministry(2003)National NaturalSciences Foundation(No.30860116)
文摘The roles of NF-kappaB (NF-κB) expression, Bax activity and cytochrome C (Cyt C) release, apoptosis of islet cells induced by high concentration glucose were explored in vitro. Pancreatic islet cells, which were isolated from Kunming mice, were cultured with different concentrations of glucose in DMEM, and divided into the following groups: G1, G2, G3, G4, G5, and G6 groups, corresponding to the glucose concentrations of 5.6, 7.8, 11.1, 16.7, 22.5, and 27.6 mmol/L, respectively. After culture for 120 h, insulin secretion was evaluated by radioimmunoassay, and the NF-rd3 expression was detected by immunocytochemistry. Bax activity and Cyt C release were measured by immunofluorescence, and apoptosis was examined by Hoechst33342 assay. The results showed that in GI, G2 and G3 groups, insulin secretion was enhanced with the increase of glucose concentration, and the NF-κB expression was also increased (P〈0.05), but Bax activity, Cyt C release and apoptosis rate showed no significant difference among them. However, in G4, G5, and G6 groups, apoptosis rate of islet cells, NF-rd3 expression, Bax activity, and Cyt C release were all significantly increased, and insulin secretion was impaired as compared with G1, G2, and G3 groups (P〈0.05). It was concluded that the exposure of islet cells to high glucose could induce islet cells apoptosis as well as impaired insulin secretion. The NF-κB signaling pathway and mitochondria pathway in islet cells might play some roles in the progressive loss of islet cells in diabetes. The inhibition of the NF-κB expression could be an effective strategy for protecting pancreatic islet cells.
基金National Natural Science Foundation of China(No.81970668)Shaanxi Science and Technology Planning Project(No.2019JM-116)。
文摘Objective:To study the effect of mechanism of high glucose on apoptosis and cell cycle arrest of isletβcells via p27 pathway.Methods:Islet INS-1 cells were cultured and divided into groups.The control group was treated with ordinary medium,the high glucose group was treated with high glucose medium containing 25mmol/L glucose,the high glucose+si-NC group was treated with high glucose medium and transfected with NC siRNA,and the high glucose+si-P27 group was treated with high glucose medium and transfected with p27 siRNA.After 24 hours treatment,MTS assay was used to detect the cell viability A490,TUNEL assay was used to detect apoptosis rate,flow cytometry was used to detect the cell cycle distribution and western blot was used to detect the expression levels of P27,caspase-8 and cyclinD1.Results:Compared with those in the control group,the A490,the ratio of S phase and G2/M phase as well as the expression level of CyclinD1 decreased,while the apoptosis rate,the ratio of G0/G1 phase as well as the expression levels of P27 and caspase-8 increased in the high glucose group(P<0.05);compared with those in the high glucose group,the A490,cell cycle as well as the expression levels of P27,caspase-8 and cyclinD1 were not different from those in the high glucose+si-NC group(P>0.05);compared with those in the high glucose group and high glucose+si-NC group,the A490,the ratio of S phase and G2/M phase as well as the expression levels of cyclinD1 increased,while the apoptosis rate,the ratio of G0/G1 phase as well as the expression levels of p27 and caspase-8 decreased in the high glucose+si-P27 group(P<0.05).Conclusion:The apoptosis and cell cycle arrest induced by high glucose are related to P27 pathway activation.
基金Program for Changjiang Scholar and Innova-tive Team in University(Grant No.985-2-063-112).
文摘Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.
基金the National Natural Science Foundation of China (No. 30300253) and Wuhan Chenguang Science and Technology Project (No. 20065004116-25).
文摘Inhibin a is one of the candidate genes that control the ovulation in poultry. To study the genetic effects of inhibin a on apoptosis and proliferation of goose granulosa cells cultured in vitro, two RNA interference (RNAi) expression vectors, psiRNA-INHal and psiRNA-INHα2, were constructed to knock down inhibin α gene expression. After 48 h of transfection, the efficiency of these two RNAi expression vectors was examined by fluorescence microscopy. Meanwhile, inhibin protein expression levels, apoptosis indexes (AI) and proliferation indexes (PI) of granulosa cells were analyzed by flow cytometry. In addition, the supernatants were collected to assay the concentrations of estrogen (E2) and progesterone (P) by radioimmunoassay. The results showed that the expression level of inhibin a in the RNAi group were decreased 30%--40% than those in the control groups (P 〈0.05) and the apoptosis indexes and proliferation indexes in the RNAi groups were significantly higher than those in the control groups (P 〈0.05). However, the E2 concentrations in the RNAi groups were lower than those in the control groups (P 〈0.05). These results indicate that inhibin a has antagonistic effect on granulosa cell apoptosis.