Backgroud: Current understanding of injury and regeneration of islet β-cells in diabetes is mainly based on rodent studies. The tree shrew is now generally accepted as being among the closest living relatives of prim...Backgroud: Current understanding of injury and regeneration of islet β-cells in diabetes is mainly based on rodent studies. The tree shrew is now generally accepted as being among the closest living relatives of primates, and has been widely used in animal experimentation. However, there are few reports on islet cell composition and regeneration of β-cells in tree shrews.Methods: In this study, we examined the changes in islet cell composition and regeneration of β-cells after streptozotocin(STZ) treatment in tree shrews compared with Sprague-Dawley rats. Injury and regeneration of islet β-cells were observed using hematoxylin and eosin(HE) staining and immunohistochemical staining for insulin, glucagon, somatostatin and PDX-1.Results: Our data showed that in rats islet injury was most obvious on day 3 after injection, and islet morphologies were significantly restored by day 21. Regeneration of islet β-cells was very pronounced in rats, and mainly involved regeneration of centro-acinar cells and transformation of extra-islet ductal cells. In tree shrews, the regeneration of islet β-cells was not as significant. On days 3 and 7, only scattered regenerated cells were observed in the remaining islets. Further, no regeneration of centro-acinar cells was observed.Conclusion: The results suggest that the repair mechanism of islet β-cells in tree shrews is similar to that of humans.展开更多
AIM: To develop an experimental model of islet allotransplantation in diabetic rats and to determine the positive or adverse effects of MMF as a single agent. METHODS: Thirty-six male Wistar rats and 18 male Lewis rat...AIM: To develop an experimental model of islet allotransplantation in diabetic rats and to determine the positive or adverse effects of MMF as a single agent. METHODS: Thirty-six male Wistar rats and 18 male Lewis rats were used as recipients and donors respectively. Diabetes was induced by the use of streptozotocin (60 mg/kg) intraperitoneally. Unpurified islets were isolated using the collagenase digestion technique and transplanted into the splenic parenchyma. The recipients were randomly assigned to one of the following three groups: group A (control group) had no immunosuppression; group B received cyclosporine (CsA) (5 mg/kg); group C receivedmycophenolate mofetil (MMF) (20 mg/kg). The animalswere killed on the 12th d. Blood and grafted tissues were obtained for laboratory and histological assessment. RESULTS: Median allograft survival was significantly higher in the two therapy groups than that in the controls (10 and 12 d for CsA and MMF respectively vs 0 d for the control group, P<0.01). No difference in allograft survival between the CsA and MMF groups was found. However,MMF had less renal and hepatic toxicity and allowed weight gain.CONCLUSION: Monotherapy with MMF for immunosu ppression was safe in an experimental model of islet allotransplantation and was equally effective with cyclosporine, with less toxicity.展开更多
Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration.Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collecte...Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration.Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collected.Diabetes mellitus rat model was induced with 65 mg/kg of streptozotocin.Insulin, glucagon, somatostatin, nestin, and cytokeratin 19 (CK19) of pancreatic tissues were observed by immunohistochemistry.Results At 9 weeks of gestation, pancreatic epithelial cells began to co-express insulin, glucagon, somatostatin, and CK19 before migration.Islet cells gradually congregated along with the increase of aging, and at 14 weeks of gestation histological examination showed islet formation.At 12 weeks of gestation, nestin-positive cells could be seen in the pancreatic mesenchyme.During early embryogenesis, islet cells of pancreatic ducts co-expressed insulin, glucagon, and somatostatin.During pancreatic regeneration after damage, nestin expression of islet cells increased.Conclusion In the early stage of embryogenesis, islet cells of primary pancreatic ducts can be differentiated to multipotential endocrine cells before migration.During tissue regeneration, pancreatic stem cells may differentiate and proliferate to form pancreatic islet.展开更多
The pancreas became one of the first objects of regenerative medicine,since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted.The number of people living with diabetes m...The pancreas became one of the first objects of regenerative medicine,since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted.The number of people living with diabetes mellitus is currently approaching half a billion,hence the crucial relevance of new methods to stimulate regeneration of the insulin-secretingβ-cells of the islets of Langerhans.Natural restrictions on the islet regeneration are very tight;nevertheless,the islets are capable of physiological regeneration viaβ-cell self-replication,direct differentiation of multipotent progenitor cells and spontaneousα-toβ-orδ-toβ-cell conversion(trans-differentiation).The existing preclinical models ofβ-cell dysfunction or ablation(induced surgically,chemically or genetically)have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation.The ultimate goal,sufficient level of functional activity ofβ-cells or their substitutes can be achieved by two prospective broad strategies:β-cell replacement andβ-cell regeneration.The“regeneration”strategy aims to maintain a preserved population ofβ-cells through in situ exposure to biologically active substances that improveβ-cell survival,replication and insulin secretion,or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β-toβ-cell conversion.The“replacement”strategy implies transplantation ofβ-cells(as non-disintegrated pancreatic material or isolated donor islets)orβ-like cells obtained ex vivo from progenitors or mature somatic cells(for example,hepatocytes orα-cells)under the action of small-molecule inducers or by genetic modification.We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally activeβ-cells,the innermost hope of millions of people globally.展开更多
Objective: To evaluate the immunoisola ti ng effects of barium-alginate microencapsulation on islets allograft survival. Methods: The nonmicroencapsulated and microencapsulated islets w ere transplanted under the kid...Objective: To evaluate the immunoisola ti ng effects of barium-alginate microencapsulation on islets allograft survival. Methods: The nonmicroencapsulated and microencapsulated islets w ere transplanted under the kidney capsule or intraperitoneally into Wistar rat w ith STZ-induced diabetes. The blood glucose and insulin secretion of grafts wer e observed. Graft function was tested by oral glucose tolerance test (OGTT). Results: ①Five diabetic rats became normoglycemic for 48 to 72 h after microencapsulated islets transplantation. The survival of transplanted i slets was on an average of 6 W. ②The normalization of the glycemia and insulin in the transplanted rats was associated with normal glucose and insulin profiles in response to OGTT. Conclusion: Microencapsulation with barium -alginate membrane can prolong islet survival and protect islets against allore jection.展开更多
Type 1 diabetes mellitus is an autoimmune disease,which results in the permanent destruction of β-cells of the pancreatic islets of Langerhans.While exogenous insulin therapy has dramatically improved the quality of ...Type 1 diabetes mellitus is an autoimmune disease,which results in the permanent destruction of β-cells of the pancreatic islets of Langerhans.While exogenous insulin therapy has dramatically improved the quality of life,chronic diabetic complications develop in a substantial proportion of subjects and these complications generally progress and worsen over time.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.Reasons for this diff iculty include compliance issues and the increased risk of severe hypoglycemic episodes,which are generally associated with intensification of exogenous insulin therapy.Clinical studies have shown that transplantation of pancreas or purified pancreatic islets can support glucose homeostasis in type 1 diabetic patients.Islet transplantation carries the special advantages of being less invasive and resulting in fewer complications compared with the traditional pancreas or pancreas-kidney transplantation.However,islet transplantation efforts have limitations including the short supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long-term results.The purpose of this article is to review recent progress in clinical islet transplantation for the treatment of diabetes.展开更多
BACKGROUND: The most common complication after allogenic islet transplantation is rejection. This study was to evaluate the effect of anti-rejection of glucocorticoid-free immunosuppressive regimen on allogenic islet ...BACKGROUND: The most common complication after allogenic islet transplantation is rejection. This study was to evaluate the effect of anti-rejection of glucocorticoid-free immunosuppressive regimen on allogenic islet transplantation. METHODS: Tacrolimus(FK506)+mycophenolate mofetil (MMF) and FK506+MMF+prednisone (Pred) were administered respectively for 2 weeks to inhibit rejection after allogenic islet transplantation in rats, which were compared with the control group. The concentrations of blood glucose, insulin and C-peptide were determined dynamically in recipients and the sites of transplantation were observed morphologically. RESULTS: As compared with the control group without immunosuppressive agents, FK506+MMF and FK506+MMF+Pred could prolong the survival time of grafts significantly. There were many morphologically intact islets in the liver of recipients 2 months after transplantation. Group FK506+MMF kept normal levels of blood glucose, insulin and C-peptide beyond 60 days after transplantation. In contrast, group FK506+MMF+Pred secreted less C-peptide(P<0.05) and maintained a higher level of blood glucose concentration (P<0.01) after the operation. There was no significant difference in insulin concentrations between the two groups. The level of blood glucose beyond the first 2 weeks after drug withdrawal in group FK506+MMF+Pred decreased obviously (P<0.05), and the secretion of insulin and C-peptide increased. These results were compared with those the first 2 weeks after transplantation and the first 2 weeks after drug withdrawal. CONCLUSIONS: Both regimens of FK506+MMF and FK506+MMF+Pred could provide effective immunosup-pression. Moreover the combined glucocorticoid-free immunosuppressive strategy of low-dose FK506 and MMF could protect islet grafts in islet transplantation without diabetogenic side-effects.展开更多
Nutritional insufficiency during pregnancy has been shown to alter the metabolism of the offspring and can increase the risk of type 2 diabetes. The phenotype in the offspring involves changes to the morphology and fu...Nutritional insufficiency during pregnancy has been shown to alter the metabolism of the offspring and can increase the risk of type 2 diabetes. The phenotype in the offspring involves changes to the morphology and functional capacity of the endocrine pancreas, and in the supporting islet microvasculature. Pancreatic β-cells possess a plastic potential and can partially recover from catastrophic loss. This is partly due to the existence of progenitors within the islets and the ability to generate new islets by neogenesis from the pancreatic ducts. This regenerative capacity is induced by bone marrow-derived stem cells, including endothelial cell progenitors and is associated with increased angiogenesis within the islets. Nutritional insults in early life, such as feeding a low protein diet to the mother, impair the regenerative capacity of the β-cells. The mechanisms underlying this include a reduced ability of β-cells to differentiate from the progenitor population, changes in the inductive signals from the microvasculature and an altered presence of endothelial progenitors. Statin treatment within animal models was associated with angiogenesis in the islet microvasculature, improved vascular function and an increase in β-cell mass. This demonstrates that reversal of the impaired β-cell phenotype observed following nutritional insult in early life is potentially possible.展开更多
Diabetes mellitus remains a major burden.More than 200 million people are affected worldwide,which represents 6%of the world’s population.Type 1 diabetes mellitus is an autoimmune disease,which induces the permanent ...Diabetes mellitus remains a major burden.More than 200 million people are affected worldwide,which represents 6%of the world’s population.Type 1 diabetes mellitus is an autoimmune disease,which induces the permanent destruction of theβ-cells of the pancreatic islets of Langerhans.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficientβcells.However,islet transplantation efforts have various limitations,including the limited supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long term results.The purpose of this article is to review the recent progress in clinical islet transplantation for the treatment of diabetes and to describe the recent progress on pancreatic stem/progenitor cell research,which has opened up several possibilities for the development of new treatments for diabetes.展开更多
Objective: To evaluate the anticancer potentials of Annona muricata fruit by in vitro and in vivo methods. Methods: The ethanolic extract of Annona muricata fruit was prepared by Soxhlet extraction method and further ...Objective: To evaluate the anticancer potentials of Annona muricata fruit by in vitro and in vivo methods. Methods: The ethanolic extract of Annona muricata fruit was prepared by Soxhlet extraction method and further fractionated with petroleum ether, ethyl acetate and chloroform. The fractions were tested for cytotoxicity, apoptosis, scratch wound assay, and cell cycle analysis. IC50, apoptotic index and percentage cell migration were determined using HepG2 cells. For the in vivo studies, hepatocellular carcinoma was induced by administering 0.01% diethylnitrosamine(DEN) in drinking water in Wistar rats. In pre-treatment, rats were co-administered 200 mg/kg of fruit extract with DEN for 14 weeks. In post-treatment, the extract was co-administered after 8-weeks of DEN-induction for 14 weeks. Liver function test, haematological test, oxidative stress markers, relative liver weight, number of cancer nodules and histopathological parameters were determined.Results: Annona muricata fruit extract =significantly lowered cell proliferation counts. The chloroform-fraction possessed higher activity (IC50=(53.7±4.3) μg/mL)The chloroform fraction inhibited cell migration, which was significant compared to curcumin. Further investigations regarding the mode of anticancer activity revealed that the chloroform fraction induced apoptosis. The cell cycle analysis indicated that cells were being arrested at G0/G1. In the in vivo studies, the DEN-control group showed a significant decrease in body weights with increased mortality rate, hepatic nodules, and impairment of liver function compared to normal rats. The rats pre-treated and post-treated with the extract showed positive results with significant improvement in the parameters that were adversely affected by DEN. In addition, other adverse effects of DEN, such as blood dyscrasias and hepatic endogenous antioxidant, were significantly attenuated by Annona muricata fruit extract.Conclusions: The Annona muricata fruit extract has anticancer activity when tested by in vitro and in vivo hepatocellular cancer models.展开更多
Islets from RIP-PDE3B mice, exhibiting β-cell specific overexpression of the cAMP/cGMP-degrading enzyme phosphodiesterase 3B (PDE3B) and dysregulated insulin secretion, were subjected to microarray analysis. We show ...Islets from RIP-PDE3B mice, exhibiting β-cell specific overexpression of the cAMP/cGMP-degrading enzyme phosphodiesterase 3B (PDE3B) and dysregulated insulin secretion, were subjected to microarray analysis. We show that osteopontin (OPN) mRNA is increased in a dose-dependent manner in islets from RIP-PDE3B mice, as compared to wild-type islets. In addition, in silico analysis shows that PDE3B and OPN are interacting. Furthermore, OPN interacts with protein kinase CK2 ina distinct submodule of the protein-protein interaction network. We studied PDE3B and OPN proteins and, in some cases, also PDE1B and PDE4C, under conditions of relevance for insulin secretion. In the presence of forskolin, PDE inhibitors, insulin, or a protein kinase CK2 inhibitor, similar alterations in protein levels of PDE3B and OPN are shown. In summary, results from using a number of strategies demonstrate a connection between PDE3B and OPNas well as a role for protein kinase CK2 inpancreatic β-cells.展开更多
Prostaglandin E-2(PGE(2)) is a well-known mediator of beta-cell dysfunction in both type 1 and type 2 diabetes.We recently reported that down-regulation of the Akt pathway activity is implicated in PGE(2)-induced panc...Prostaglandin E-2(PGE(2)) is a well-known mediator of beta-cell dysfunction in both type 1 and type 2 diabetes.We recently reported that down-regulation of the Akt pathway activity is implicated in PGE(2)-induced pancreatic beta-cell dysfunction.The aim of this study was to further dissect the signaling pathway of this process in pancreatic beta-cell line HIT-T15 cells and primary mouse islets.We found that PGE(2) time-dependently increased the c-Jun N-terminal kinase(JNK) pathway activity.JNK inhibition by the JNK-specific inhibitor SP600125 reversed PGE(2)-inhibited glucose-stimulated insulin secretion(GSIS).PGE(2) induced dephosphorylation of Akt and FOXO1, leading to nuclear localization and transactivation of FOXO1.Activation of FOXO1 induced nuclear exclusion but had no obvious effect on the whole-cell protein level of pancreatic and duodenal homeobox 1(PDX1).However, these effects were all attenuated by JNK inhibition.Furthermore, adenovirus-mediated overexpression of dominant-negative(DN)FOXO1 abolished whereas constitutively active(CA)-FOXO1 mimicked the effects of PGE(2) on GSIS in isolated mouse islets.In addition, we demonstrated that DN-JNK1 but not DN-JNK2 or CA-Akt abolished the PGE(2)-induced AP-1 luciferase reporter activity, whereas DN-JNK1 and CA-Akt but not DN-JNK2 reversed the effect of PGE(2) on FOXO1 transcriptional activity, and overexpression of DN-JNK1 rescued PGE(2)-impaired GSIS in mouse islets.Our results revealed that activation of the JNK is involved in PGE(2)induced beta-cell dysfunction.PGE(2)-mediated JNK1 activation, through dephosphorylation of Akt and FOXO1, leads to nuclear accumulation of FOXO1 and nucleocytoplasmic shuttling of PDX1, finally resulting in defective GSIS in pancreatic beta-cells.展开更多
In order to study the correlation between the neuroendocrine and immune systems, we observed the distribution and expression of interferon γ(IFN-γ) in cells of SD rat pancreas islets using the streptavidin-perosidas...In order to study the correlation between the neuroendocrine and immune systems, we observed the distribution and expression of interferon γ(IFN-γ) in cells of SD rat pancreas islets using the streptavidin-perosidase immunohistochemical method. A number of IFN-γ-like positive substances were found in the in the cytoplasm of pancreas islet A cells, but the nucleus could not be stained. Most of the IFN-γ-like positive cells were distributed around the periphery of the pancreas islet, the cells were round or oval in shape and the cell body was relatively large. Results suggest IFN-γ may play a role in the regulation of the function of pancreas islet cells and act as a neuro-immune medium .展开更多
基金Laboratory Animal Science of PLA,Grant/Award Number:SYDW[2014]-0009The National Science and Technology Support Program,Grant/Award Number:2011BAI15B01,2014BAI01B01
文摘Backgroud: Current understanding of injury and regeneration of islet β-cells in diabetes is mainly based on rodent studies. The tree shrew is now generally accepted as being among the closest living relatives of primates, and has been widely used in animal experimentation. However, there are few reports on islet cell composition and regeneration of β-cells in tree shrews.Methods: In this study, we examined the changes in islet cell composition and regeneration of β-cells after streptozotocin(STZ) treatment in tree shrews compared with Sprague-Dawley rats. Injury and regeneration of islet β-cells were observed using hematoxylin and eosin(HE) staining and immunohistochemical staining for insulin, glucagon, somatostatin and PDX-1.Results: Our data showed that in rats islet injury was most obvious on day 3 after injection, and islet morphologies were significantly restored by day 21. Regeneration of islet β-cells was very pronounced in rats, and mainly involved regeneration of centro-acinar cells and transformation of extra-islet ductal cells. In tree shrews, the regeneration of islet β-cells was not as significant. On days 3 and 7, only scattered regenerated cells were observed in the remaining islets. Further, no regeneration of centro-acinar cells was observed.Conclusion: The results suggest that the repair mechanism of islet β-cells in tree shrews is similar to that of humans.
基金Supported by the Special Research Fund, Account Code: 4280, National and Kapodistrian University of Athens, Greece
文摘AIM: To develop an experimental model of islet allotransplantation in diabetic rats and to determine the positive or adverse effects of MMF as a single agent. METHODS: Thirty-six male Wistar rats and 18 male Lewis rats were used as recipients and donors respectively. Diabetes was induced by the use of streptozotocin (60 mg/kg) intraperitoneally. Unpurified islets were isolated using the collagenase digestion technique and transplanted into the splenic parenchyma. The recipients were randomly assigned to one of the following three groups: group A (control group) had no immunosuppression; group B received cyclosporine (CsA) (5 mg/kg); group C receivedmycophenolate mofetil (MMF) (20 mg/kg). The animalswere killed on the 12th d. Blood and grafted tissues were obtained for laboratory and histological assessment. RESULTS: Median allograft survival was significantly higher in the two therapy groups than that in the controls (10 and 12 d for CsA and MMF respectively vs 0 d for the control group, P<0.01). No difference in allograft survival between the CsA and MMF groups was found. However,MMF had less renal and hepatic toxicity and allowed weight gain.CONCLUSION: Monotherapy with MMF for immunosu ppression was safe in an experimental model of islet allotransplantation and was equally effective with cyclosporine, with less toxicity.
文摘Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration.Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collected.Diabetes mellitus rat model was induced with 65 mg/kg of streptozotocin.Insulin, glucagon, somatostatin, nestin, and cytokeratin 19 (CK19) of pancreatic tissues were observed by immunohistochemistry.Results At 9 weeks of gestation, pancreatic epithelial cells began to co-express insulin, glucagon, somatostatin, and CK19 before migration.Islet cells gradually congregated along with the increase of aging, and at 14 weeks of gestation histological examination showed islet formation.At 12 weeks of gestation, nestin-positive cells could be seen in the pancreatic mesenchyme.During early embryogenesis, islet cells of pancreatic ducts co-expressed insulin, glucagon, and somatostatin.During pancreatic regeneration after damage, nestin expression of islet cells increased.Conclusion In the early stage of embryogenesis, islet cells of primary pancreatic ducts can be differentiated to multipotential endocrine cells before migration.During tissue regeneration, pancreatic stem cells may differentiate and proliferate to form pancreatic islet.
基金Supported by the President Grant for Government Support of Young Russian Scientists,No.075-15-2019-1120.
文摘The pancreas became one of the first objects of regenerative medicine,since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted.The number of people living with diabetes mellitus is currently approaching half a billion,hence the crucial relevance of new methods to stimulate regeneration of the insulin-secretingβ-cells of the islets of Langerhans.Natural restrictions on the islet regeneration are very tight;nevertheless,the islets are capable of physiological regeneration viaβ-cell self-replication,direct differentiation of multipotent progenitor cells and spontaneousα-toβ-orδ-toβ-cell conversion(trans-differentiation).The existing preclinical models ofβ-cell dysfunction or ablation(induced surgically,chemically or genetically)have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation.The ultimate goal,sufficient level of functional activity ofβ-cells or their substitutes can be achieved by two prospective broad strategies:β-cell replacement andβ-cell regeneration.The“regeneration”strategy aims to maintain a preserved population ofβ-cells through in situ exposure to biologically active substances that improveβ-cell survival,replication and insulin secretion,or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β-toβ-cell conversion.The“replacement”strategy implies transplantation ofβ-cells(as non-disintegrated pancreatic material or isolated donor islets)orβ-like cells obtained ex vivo from progenitors or mature somatic cells(for example,hepatocytes orα-cells)under the action of small-molecule inducers or by genetic modification.We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally activeβ-cells,the innermost hope of millions of people globally.
基金Subject of Jiangsu Province135 Projects (2001 31)
文摘Objective: To evaluate the immunoisola ti ng effects of barium-alginate microencapsulation on islets allograft survival. Methods: The nonmicroencapsulated and microencapsulated islets w ere transplanted under the kidney capsule or intraperitoneally into Wistar rat w ith STZ-induced diabetes. The blood glucose and insulin secretion of grafts wer e observed. Graft function was tested by oral glucose tolerance test (OGTT). Results: ①Five diabetic rats became normoglycemic for 48 to 72 h after microencapsulated islets transplantation. The survival of transplanted i slets was on an average of 6 W. ②The normalization of the glycemia and insulin in the transplanted rats was associated with normal glucose and insulin profiles in response to OGTT. Conclusion: Microencapsulation with barium -alginate membrane can prolong islet survival and protect islets against allore jection.
基金Supported by The All Saints Health Foundation (in part)
文摘Type 1 diabetes mellitus is an autoimmune disease,which results in the permanent destruction of β-cells of the pancreatic islets of Langerhans.While exogenous insulin therapy has dramatically improved the quality of life,chronic diabetic complications develop in a substantial proportion of subjects and these complications generally progress and worsen over time.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.Reasons for this diff iculty include compliance issues and the increased risk of severe hypoglycemic episodes,which are generally associated with intensification of exogenous insulin therapy.Clinical studies have shown that transplantation of pancreas or purified pancreatic islets can support glucose homeostasis in type 1 diabetic patients.Islet transplantation carries the special advantages of being less invasive and resulting in fewer complications compared with the traditional pancreas or pancreas-kidney transplantation.However,islet transplantation efforts have limitations including the short supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long-term results.The purpose of this article is to review recent progress in clinical islet transplantation for the treatment of diabetes.
文摘BACKGROUND: The most common complication after allogenic islet transplantation is rejection. This study was to evaluate the effect of anti-rejection of glucocorticoid-free immunosuppressive regimen on allogenic islet transplantation. METHODS: Tacrolimus(FK506)+mycophenolate mofetil (MMF) and FK506+MMF+prednisone (Pred) were administered respectively for 2 weeks to inhibit rejection after allogenic islet transplantation in rats, which were compared with the control group. The concentrations of blood glucose, insulin and C-peptide were determined dynamically in recipients and the sites of transplantation were observed morphologically. RESULTS: As compared with the control group without immunosuppressive agents, FK506+MMF and FK506+MMF+Pred could prolong the survival time of grafts significantly. There were many morphologically intact islets in the liver of recipients 2 months after transplantation. Group FK506+MMF kept normal levels of blood glucose, insulin and C-peptide beyond 60 days after transplantation. In contrast, group FK506+MMF+Pred secreted less C-peptide(P<0.05) and maintained a higher level of blood glucose concentration (P<0.01) after the operation. There was no significant difference in insulin concentrations between the two groups. The level of blood glucose beyond the first 2 weeks after drug withdrawal in group FK506+MMF+Pred decreased obviously (P<0.05), and the secretion of insulin and C-peptide increased. These results were compared with those the first 2 weeks after transplantation and the first 2 weeks after drug withdrawal. CONCLUSIONS: Both regimens of FK506+MMF and FK506+MMF+Pred could provide effective immunosup-pression. Moreover the combined glucocorticoid-free immunosuppressive strategy of low-dose FK506 and MMF could protect islet grafts in islet transplantation without diabetogenic side-effects.
基金Supported by the Canadian Institutes of Health Research,the Canadian Diabetes Association and the Juvenile Diabetes Research Foundation
文摘Nutritional insufficiency during pregnancy has been shown to alter the metabolism of the offspring and can increase the risk of type 2 diabetes. The phenotype in the offspring involves changes to the morphology and functional capacity of the endocrine pancreas, and in the supporting islet microvasculature. Pancreatic β-cells possess a plastic potential and can partially recover from catastrophic loss. This is partly due to the existence of progenitors within the islets and the ability to generate new islets by neogenesis from the pancreatic ducts. This regenerative capacity is induced by bone marrow-derived stem cells, including endothelial cell progenitors and is associated with increased angiogenesis within the islets. Nutritional insults in early life, such as feeding a low protein diet to the mother, impair the regenerative capacity of the β-cells. The mechanisms underlying this include a reduced ability of β-cells to differentiate from the progenitor population, changes in the inductive signals from the microvasculature and an altered presence of endothelial progenitors. Statin treatment within animal models was associated with angiogenesis in the islet microvasculature, improved vascular function and an increase in β-cell mass. This demonstrates that reversal of the impaired β-cell phenotype observed following nutritional insult in early life is potentially possible.
文摘Diabetes mellitus remains a major burden.More than 200 million people are affected worldwide,which represents 6%of the world’s population.Type 1 diabetes mellitus is an autoimmune disease,which induces the permanent destruction of theβ-cells of the pancreatic islets of Langerhans.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficientβcells.However,islet transplantation efforts have various limitations,including the limited supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long term results.The purpose of this article is to review the recent progress in clinical islet transplantation for the treatment of diabetes and to describe the recent progress on pancreatic stem/progenitor cell research,which has opened up several possibilities for the development of new treatments for diabetes.
文摘Objective: To evaluate the anticancer potentials of Annona muricata fruit by in vitro and in vivo methods. Methods: The ethanolic extract of Annona muricata fruit was prepared by Soxhlet extraction method and further fractionated with petroleum ether, ethyl acetate and chloroform. The fractions were tested for cytotoxicity, apoptosis, scratch wound assay, and cell cycle analysis. IC50, apoptotic index and percentage cell migration were determined using HepG2 cells. For the in vivo studies, hepatocellular carcinoma was induced by administering 0.01% diethylnitrosamine(DEN) in drinking water in Wistar rats. In pre-treatment, rats were co-administered 200 mg/kg of fruit extract with DEN for 14 weeks. In post-treatment, the extract was co-administered after 8-weeks of DEN-induction for 14 weeks. Liver function test, haematological test, oxidative stress markers, relative liver weight, number of cancer nodules and histopathological parameters were determined.Results: Annona muricata fruit extract =significantly lowered cell proliferation counts. The chloroform-fraction possessed higher activity (IC50=(53.7±4.3) μg/mL)The chloroform fraction inhibited cell migration, which was significant compared to curcumin. Further investigations regarding the mode of anticancer activity revealed that the chloroform fraction induced apoptosis. The cell cycle analysis indicated that cells were being arrested at G0/G1. In the in vivo studies, the DEN-control group showed a significant decrease in body weights with increased mortality rate, hepatic nodules, and impairment of liver function compared to normal rats. The rats pre-treated and post-treated with the extract showed positive results with significant improvement in the parameters that were adversely affected by DEN. In addition, other adverse effects of DEN, such as blood dyscrasias and hepatic endogenous antioxidant, were significantly attenuated by Annona muricata fruit extract.Conclusions: The Annona muricata fruit extract has anticancer activity when tested by in vitro and in vivo hepatocellular cancer models.
文摘Islets from RIP-PDE3B mice, exhibiting β-cell specific overexpression of the cAMP/cGMP-degrading enzyme phosphodiesterase 3B (PDE3B) and dysregulated insulin secretion, were subjected to microarray analysis. We show that osteopontin (OPN) mRNA is increased in a dose-dependent manner in islets from RIP-PDE3B mice, as compared to wild-type islets. In addition, in silico analysis shows that PDE3B and OPN are interacting. Furthermore, OPN interacts with protein kinase CK2 ina distinct submodule of the protein-protein interaction network. We studied PDE3B and OPN proteins and, in some cases, also PDE1B and PDE4C, under conditions of relevance for insulin secretion. In the presence of forskolin, PDE inhibitors, insulin, or a protein kinase CK2 inhibitor, similar alterations in protein levels of PDE3B and OPN are shown. In summary, results from using a number of strategies demonstrate a connection between PDE3B and OPNas well as a role for protein kinase CK2 inpancreatic β-cells.
文摘Prostaglandin E-2(PGE(2)) is a well-known mediator of beta-cell dysfunction in both type 1 and type 2 diabetes.We recently reported that down-regulation of the Akt pathway activity is implicated in PGE(2)-induced pancreatic beta-cell dysfunction.The aim of this study was to further dissect the signaling pathway of this process in pancreatic beta-cell line HIT-T15 cells and primary mouse islets.We found that PGE(2) time-dependently increased the c-Jun N-terminal kinase(JNK) pathway activity.JNK inhibition by the JNK-specific inhibitor SP600125 reversed PGE(2)-inhibited glucose-stimulated insulin secretion(GSIS).PGE(2) induced dephosphorylation of Akt and FOXO1, leading to nuclear localization and transactivation of FOXO1.Activation of FOXO1 induced nuclear exclusion but had no obvious effect on the whole-cell protein level of pancreatic and duodenal homeobox 1(PDX1).However, these effects were all attenuated by JNK inhibition.Furthermore, adenovirus-mediated overexpression of dominant-negative(DN)FOXO1 abolished whereas constitutively active(CA)-FOXO1 mimicked the effects of PGE(2) on GSIS in isolated mouse islets.In addition, we demonstrated that DN-JNK1 but not DN-JNK2 or CA-Akt abolished the PGE(2)-induced AP-1 luciferase reporter activity, whereas DN-JNK1 and CA-Akt but not DN-JNK2 reversed the effect of PGE(2) on FOXO1 transcriptional activity, and overexpression of DN-JNK1 rescued PGE(2)-impaired GSIS in mouse islets.Our results revealed that activation of the JNK is involved in PGE(2)induced beta-cell dysfunction.PGE(2)-mediated JNK1 activation, through dephosphorylation of Akt and FOXO1, leads to nuclear accumulation of FOXO1 and nucleocytoplasmic shuttling of PDX1, finally resulting in defective GSIS in pancreatic beta-cells.
文摘In order to study the correlation between the neuroendocrine and immune systems, we observed the distribution and expression of interferon γ(IFN-γ) in cells of SD rat pancreas islets using the streptavidin-perosidase immunohistochemical method. A number of IFN-γ-like positive substances were found in the in the cytoplasm of pancreas islet A cells, but the nucleus could not be stained. Most of the IFN-γ-like positive cells were distributed around the periphery of the pancreas islet, the cells were round or oval in shape and the cell body was relatively large. Results suggest IFN-γ may play a role in the regulation of the function of pancreas islet cells and act as a neuro-immune medium .