Type 1 diabetes mellitus is an autoimmune disease,which results in the permanent destruction of β-cells of the pancreatic islets of Langerhans.While exogenous insulin therapy has dramatically improved the quality of ...Type 1 diabetes mellitus is an autoimmune disease,which results in the permanent destruction of β-cells of the pancreatic islets of Langerhans.While exogenous insulin therapy has dramatically improved the quality of life,chronic diabetic complications develop in a substantial proportion of subjects and these complications generally progress and worsen over time.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.Reasons for this diff iculty include compliance issues and the increased risk of severe hypoglycemic episodes,which are generally associated with intensification of exogenous insulin therapy.Clinical studies have shown that transplantation of pancreas or purified pancreatic islets can support glucose homeostasis in type 1 diabetic patients.Islet transplantation carries the special advantages of being less invasive and resulting in fewer complications compared with the traditional pancreas or pancreas-kidney transplantation.However,islet transplantation efforts have limitations including the short supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long-term results.The purpose of this article is to review recent progress in clinical islet transplantation for the treatment of diabetes.展开更多
Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration.Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collecte...Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration.Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collected.Diabetes mellitus rat model was induced with 65 mg/kg of streptozotocin.Insulin, glucagon, somatostatin, nestin, and cytokeratin 19 (CK19) of pancreatic tissues were observed by immunohistochemistry.Results At 9 weeks of gestation, pancreatic epithelial cells began to co-express insulin, glucagon, somatostatin, and CK19 before migration.Islet cells gradually congregated along with the increase of aging, and at 14 weeks of gestation histological examination showed islet formation.At 12 weeks of gestation, nestin-positive cells could be seen in the pancreatic mesenchyme.During early embryogenesis, islet cells of pancreatic ducts co-expressed insulin, glucagon, and somatostatin.During pancreatic regeneration after damage, nestin expression of islet cells increased.Conclusion In the early stage of embryogenesis, islet cells of primary pancreatic ducts can be differentiated to multipotential endocrine cells before migration.During tissue regeneration, pancreatic stem cells may differentiate and proliferate to form pancreatic islet.展开更多
The pancreas became one of the first objects of regenerative medicine,since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted.The number of people living with diabetes m...The pancreas became one of the first objects of regenerative medicine,since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted.The number of people living with diabetes mellitus is currently approaching half a billion,hence the crucial relevance of new methods to stimulate regeneration of the insulin-secretingβ-cells of the islets of Langerhans.Natural restrictions on the islet regeneration are very tight;nevertheless,the islets are capable of physiological regeneration viaβ-cell self-replication,direct differentiation of multipotent progenitor cells and spontaneousα-toβ-orδ-toβ-cell conversion(trans-differentiation).The existing preclinical models ofβ-cell dysfunction or ablation(induced surgically,chemically or genetically)have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation.The ultimate goal,sufficient level of functional activity ofβ-cells or their substitutes can be achieved by two prospective broad strategies:β-cell replacement andβ-cell regeneration.The“regeneration”strategy aims to maintain a preserved population ofβ-cells through in situ exposure to biologically active substances that improveβ-cell survival,replication and insulin secretion,or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β-toβ-cell conversion.The“replacement”strategy implies transplantation ofβ-cells(as non-disintegrated pancreatic material or isolated donor islets)orβ-like cells obtained ex vivo from progenitors or mature somatic cells(for example,hepatocytes orα-cells)under the action of small-molecule inducers or by genetic modification.We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally activeβ-cells,the innermost hope of millions of people globally.展开更多
Nutritional insufficiency during pregnancy has been shown to alter the metabolism of the offspring and can increase the risk of type 2 diabetes. The phenotype in the offspring involves changes to the morphology and fu...Nutritional insufficiency during pregnancy has been shown to alter the metabolism of the offspring and can increase the risk of type 2 diabetes. The phenotype in the offspring involves changes to the morphology and functional capacity of the endocrine pancreas, and in the supporting islet microvasculature. Pancreatic β-cells possess a plastic potential and can partially recover from catastrophic loss. This is partly due to the existence of progenitors within the islets and the ability to generate new islets by neogenesis from the pancreatic ducts. This regenerative capacity is induced by bone marrow-derived stem cells, including endothelial cell progenitors and is associated with increased angiogenesis within the islets. Nutritional insults in early life, such as feeding a low protein diet to the mother, impair the regenerative capacity of the β-cells. The mechanisms underlying this include a reduced ability of β-cells to differentiate from the progenitor population, changes in the inductive signals from the microvasculature and an altered presence of endothelial progenitors. Statin treatment within animal models was associated with angiogenesis in the islet microvasculature, improved vascular function and an increase in β-cell mass. This demonstrates that reversal of the impaired β-cell phenotype observed following nutritional insult in early life is potentially possible.展开更多
Diabetes mellitus remains a major burden.More than 200 million people are affected worldwide,which represents 6%of the world’s population.Type 1 diabetes mellitus is an autoimmune disease,which induces the permanent ...Diabetes mellitus remains a major burden.More than 200 million people are affected worldwide,which represents 6%of the world’s population.Type 1 diabetes mellitus is an autoimmune disease,which induces the permanent destruction of theβ-cells of the pancreatic islets of Langerhans.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficientβcells.However,islet transplantation efforts have various limitations,including the limited supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long term results.The purpose of this article is to review the recent progress in clinical islet transplantation for the treatment of diabetes and to describe the recent progress on pancreatic stem/progenitor cell research,which has opened up several possibilities for the development of new treatments for diabetes.展开更多
A rat liver epithelial cell line designated LW13 was established using a sequential sedimentation method. The cell line retained many normal properties of liver epithelial cells and showed some structural and function...A rat liver epithelial cell line designated LW13 was established using a sequential sedimentation method. The cell line retained many normal properties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells. LW13 cells became malignant after the introduction of exogenous transforming EJ Ha ras gene. Tumors produced by inoculation of the transformed cells into baby rats .contained areas of poorly differentiated hepatocellular carcinoma. In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes. Furthermore , an at least tenfold increase in the expression of the endogenous c myc gene was detected among transformed cell lines, suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.展开更多
Islets from RIP-PDE3B mice, exhibiting β-cell specific overexpression of the cAMP/cGMP-degrading enzyme phosphodiesterase 3B (PDE3B) and dysregulated insulin secretion, were subjected to microarray analysis. We show ...Islets from RIP-PDE3B mice, exhibiting β-cell specific overexpression of the cAMP/cGMP-degrading enzyme phosphodiesterase 3B (PDE3B) and dysregulated insulin secretion, were subjected to microarray analysis. We show that osteopontin (OPN) mRNA is increased in a dose-dependent manner in islets from RIP-PDE3B mice, as compared to wild-type islets. In addition, in silico analysis shows that PDE3B and OPN are interacting. Furthermore, OPN interacts with protein kinase CK2 ina distinct submodule of the protein-protein interaction network. We studied PDE3B and OPN proteins and, in some cases, also PDE1B and PDE4C, under conditions of relevance for insulin secretion. In the presence of forskolin, PDE inhibitors, insulin, or a protein kinase CK2 inhibitor, similar alterations in protein levels of PDE3B and OPN are shown. In summary, results from using a number of strategies demonstrate a connection between PDE3B and OPNas well as a role for protein kinase CK2 inpancreatic β-cells.展开更多
Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cellbased therapies. On the other hand, bioprinting technology ...Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cellbased therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulinproducing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3 D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research.展开更多
The success achieved over the last decade with islet transplantation has intensified interest in treating diabetes,not only by cell transplantation,but also by stem cells.The formation of insulin-producing cells from ...The success achieved over the last decade with islet transplantation has intensified interest in treating diabetes,not only by cell transplantation,but also by stem cells.The formation of insulin-producing cells from pancreatic duct,acinar,and liver cells is an active area of investigation.Protocols for the in vitro differentiation of embryonic stem(ES)cells based on normal developmental processes,have generated insulin-producing cells,though at low efficiency and without full responsiveness to extracellular levels of glucose.Induced pluripotent stem cells,which have been generated from somatic cells by introducing Oct3/4,Sox2,Klf4,and c-Myc,and which are similar to ES cells in morphology,gene expression,epigenetic status and differentiation,can also differentiate into insulin-producing cells.Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. The purpose of this review is to demonstrate recent progress in the research for new sources ofβ-cells, and to discuss strategies for the treatment of diabetes.展开更多
Aim: To identify the influence of pancreatic stellate cell (PSCs) secretions on gene expression profiles of Min6 cells by whole transcriptome sequencing. Methods: Pancreatic stellate cells (PSCs) were isolated from C5...Aim: To identify the influence of pancreatic stellate cell (PSCs) secretions on gene expression profiles of Min6 cells by whole transcriptome sequencing. Methods: Pancreatic stellate cells (PSCs) were isolated from C57BL6J mice and propagated in vitro to acquire the activated phenotype. Total RNA was isolated from monocultured (MC) and PSC cocultured (CC) Min6 cells to prepare cDNA libraries, which were subjected to whole transcriptome sequencing for identifying differential expression of β-cell transcription factors (Pdx-1, Rfx6 and NeuroD1) related to insulin gene transcription and GSIS related genes such as Glut2, Gck, Abcc8, Kcnj11 and L-type Ca2+ channels (Cacnb2, Cacna1c). qRT-PCR was used to validate the gene expression. GSIS of Min6 cells was examined by estimating insulin levels in response to high glucose challenge. Results: Transcriptome analysis of discovery set revealed that coculture of Min6 cells with PSCs caused increased expression of β-cell specific genes (Ins1, Rfx6 and NeuroD1) concomitant with decreased expression of Pdx-1, MafA and Nkx2-2. Expression of GSIS associated genes (Glut2, Gck, Abcc8, Kcnj11 and Cacnb2) was decreased in such conditions. Validation by qRT-PCR in Min6 cells cocultured with PSCs revealed increased significant expression of Ins1 (2.1 ± 0.22 folds;p ≤ 0.001), Rfx6 (1.68 ± 0.23 folds;p ≤ 0.002) and NeuroD1 (0.96 ± 0.11 folds;p ≤ 0.01), accompanied by downregulation of Cacnb2 (-0.93 ± 0.57 folds;p ≤ 0.05). PSC secretions did not restore the GSIS from glucose unresponsive higher passage Min6 cells (MC: 1.33 ± 0.42;CC: 1.55 ± 0.72 pmol/mg protein;p = ns) upon high glucose stimulation. However, glucose responsive higher passage Min6 cells cocultured with PSCs presented increased insulin secretion (MC: 7.025 ± 0.64;CC: 14.84 ± 1.01 pmol/mg protein;p ≤ 0.04) concomitant with marginal increase of insulin contents. Conclusion: PSC secretions increase Ins1, Rfx6 and NeuroD1 gene expression, GSIS from glucose responsive Min6 cells, but do not restore the GSIS from glucose unresponsive Min6 cells.展开更多
Zinc levels are high in pancreatic β-cells, and zinc is involved in the synthesis, processing and secretion of insulin in these cells. However, precisely how cellular zinc homeostasis is regulated in pancreatic β-ce...Zinc levels are high in pancreatic β-cells, and zinc is involved in the synthesis, processing and secretion of insulin in these cells. However, precisely how cellular zinc homeostasis is regulated in pancreatic β-cells is poorly understood. By screening the expression of 14 Slc39a metal importer family member genes, we found that the zinc transporter Slc39a5 is significantly downregulated in pancreatic β-cells in diabetic db/db mice, obese ob/ob mice and high-fat diet-fed mice. Moreover,β-cell-specific Slc39a5 knockout mice have impaired insulin secretion. In addition, Slc39a5-deficient pancreatic islets have reduced glucose tolerance accompanied by reduced expression of Pgc-1α and its downstream target gene Glut2. The down-regulation of Glut2 in Slc39a5-deficient islets was rescued using agonists of Sirt1, Pgc-1α and Ppar-γ. At the mechanistic level, we found that Slc39a5-mediated zinc influx induces Glut2 expression via Sirt1-mediated Pgc-1α activation. These findings suggest that Slc39a5 may serve as a possible therapeutic target for diabetes-related conditions.展开更多
The loss of or decreased functional pancreatic β-cell is a major cause of type 1 and type 2 diabetes. Previous studies have shown that adult β-cells can maintain their ability for a low level of turnover through rep...The loss of or decreased functional pancreatic β-cell is a major cause of type 1 and type 2 diabetes. Previous studies have shown that adult β-cells can maintain their ability for a low level of turnover through replication and neogenesis. Thus, a strategy to prevent and treat dia- betes would be to enhance the ability of β-cells to increase the mass of functionalβ-cells. Consequently, much effort has been devoted to identify factors that can effectively induce β-cell expansion. This review focuses on recent reports on small molecules and protein fac- tors that have been shown to promote β-cell expansion.展开更多
Type 2 diabetes mellitus(T2DM)therapy is facing the challenges of long-term medication and gradual destruction of pancreatic isletβ-cells.Therefore,it is timely to develop oral prolonged action formulations to improv...Type 2 diabetes mellitus(T2DM)therapy is facing the challenges of long-term medication and gradual destruction of pancreatic isletβ-cells.Therefore,it is timely to develop oral prolonged action formulations to improve compliance,while restoringβ-cells survival and function.Herein,we designed a simple nanoparticle with enhanced oral absorption and pancreas accumulation property,which combined apical sodiumdependent bile acid transporter-mediated intestinal uptake and lymphatic transportation.In this system,taurocholic acid(TCA)modified poly(lactic-co-glycolic acid)(PLGA)was employed to achieve pancreas location,hydroxychloroquine(HCQ)was loaded to execute therapeutic efficacy,and 1,2-dilauroyl-sn-glycero-3-phosphocholine(DLPC)was introduced as stabilizer together with synergist(PLGA-TCA/DLPC/HCQ).In vitro and in vivo results have proven that PLGA-TCA/DLPC/HCQ reversed the pancreatic islets damage and dysfunction,thus impeding hyperglycemia progression and restoring systemic glucose homeostasis via only once administration every day.In terms of mechanism PLGA-TCA/DLPC/HCQ ameliorated oxidative stress,remodeled the inflammatory pancreas microenvironment,and activated PI3K/AKT signaling pathway without obvious toxicity.This strategy not only provides an oral delivery platform for increasing absorption and pancreas targetability but also opens a new avenue for thorough T2DM treatment.展开更多
基金Supported by The All Saints Health Foundation (in part)
文摘Type 1 diabetes mellitus is an autoimmune disease,which results in the permanent destruction of β-cells of the pancreatic islets of Langerhans.While exogenous insulin therapy has dramatically improved the quality of life,chronic diabetic complications develop in a substantial proportion of subjects and these complications generally progress and worsen over time.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.Reasons for this diff iculty include compliance issues and the increased risk of severe hypoglycemic episodes,which are generally associated with intensification of exogenous insulin therapy.Clinical studies have shown that transplantation of pancreas or purified pancreatic islets can support glucose homeostasis in type 1 diabetic patients.Islet transplantation carries the special advantages of being less invasive and resulting in fewer complications compared with the traditional pancreas or pancreas-kidney transplantation.However,islet transplantation efforts have limitations including the short supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long-term results.The purpose of this article is to review recent progress in clinical islet transplantation for the treatment of diabetes.
文摘Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration.Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collected.Diabetes mellitus rat model was induced with 65 mg/kg of streptozotocin.Insulin, glucagon, somatostatin, nestin, and cytokeratin 19 (CK19) of pancreatic tissues were observed by immunohistochemistry.Results At 9 weeks of gestation, pancreatic epithelial cells began to co-express insulin, glucagon, somatostatin, and CK19 before migration.Islet cells gradually congregated along with the increase of aging, and at 14 weeks of gestation histological examination showed islet formation.At 12 weeks of gestation, nestin-positive cells could be seen in the pancreatic mesenchyme.During early embryogenesis, islet cells of pancreatic ducts co-expressed insulin, glucagon, and somatostatin.During pancreatic regeneration after damage, nestin expression of islet cells increased.Conclusion In the early stage of embryogenesis, islet cells of primary pancreatic ducts can be differentiated to multipotential endocrine cells before migration.During tissue regeneration, pancreatic stem cells may differentiate and proliferate to form pancreatic islet.
基金Supported by the President Grant for Government Support of Young Russian Scientists,No.075-15-2019-1120.
文摘The pancreas became one of the first objects of regenerative medicine,since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted.The number of people living with diabetes mellitus is currently approaching half a billion,hence the crucial relevance of new methods to stimulate regeneration of the insulin-secretingβ-cells of the islets of Langerhans.Natural restrictions on the islet regeneration are very tight;nevertheless,the islets are capable of physiological regeneration viaβ-cell self-replication,direct differentiation of multipotent progenitor cells and spontaneousα-toβ-orδ-toβ-cell conversion(trans-differentiation).The existing preclinical models ofβ-cell dysfunction or ablation(induced surgically,chemically or genetically)have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation.The ultimate goal,sufficient level of functional activity ofβ-cells or their substitutes can be achieved by two prospective broad strategies:β-cell replacement andβ-cell regeneration.The“regeneration”strategy aims to maintain a preserved population ofβ-cells through in situ exposure to biologically active substances that improveβ-cell survival,replication and insulin secretion,or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β-toβ-cell conversion.The“replacement”strategy implies transplantation ofβ-cells(as non-disintegrated pancreatic material or isolated donor islets)orβ-like cells obtained ex vivo from progenitors or mature somatic cells(for example,hepatocytes orα-cells)under the action of small-molecule inducers or by genetic modification.We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally activeβ-cells,the innermost hope of millions of people globally.
基金Supported by the Canadian Institutes of Health Research,the Canadian Diabetes Association and the Juvenile Diabetes Research Foundation
文摘Nutritional insufficiency during pregnancy has been shown to alter the metabolism of the offspring and can increase the risk of type 2 diabetes. The phenotype in the offspring involves changes to the morphology and functional capacity of the endocrine pancreas, and in the supporting islet microvasculature. Pancreatic β-cells possess a plastic potential and can partially recover from catastrophic loss. This is partly due to the existence of progenitors within the islets and the ability to generate new islets by neogenesis from the pancreatic ducts. This regenerative capacity is induced by bone marrow-derived stem cells, including endothelial cell progenitors and is associated with increased angiogenesis within the islets. Nutritional insults in early life, such as feeding a low protein diet to the mother, impair the regenerative capacity of the β-cells. The mechanisms underlying this include a reduced ability of β-cells to differentiate from the progenitor population, changes in the inductive signals from the microvasculature and an altered presence of endothelial progenitors. Statin treatment within animal models was associated with angiogenesis in the islet microvasculature, improved vascular function and an increase in β-cell mass. This demonstrates that reversal of the impaired β-cell phenotype observed following nutritional insult in early life is potentially possible.
文摘Diabetes mellitus remains a major burden.More than 200 million people are affected worldwide,which represents 6%of the world’s population.Type 1 diabetes mellitus is an autoimmune disease,which induces the permanent destruction of theβ-cells of the pancreatic islets of Langerhans.Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy,neuropathy or retinopathy,it is difficult to achieve and maintain long term in most subjects.The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficientβcells.However,islet transplantation efforts have various limitations,including the limited supply of donor pancreata,the paucity of experienced islet isolation teams,side effects of immunosuppressants and poor long term results.The purpose of this article is to review the recent progress in clinical islet transplantation for the treatment of diabetes and to describe the recent progress on pancreatic stem/progenitor cell research,which has opened up several possibilities for the development of new treatments for diabetes.
文摘A rat liver epithelial cell line designated LW13 was established using a sequential sedimentation method. The cell line retained many normal properties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells. LW13 cells became malignant after the introduction of exogenous transforming EJ Ha ras gene. Tumors produced by inoculation of the transformed cells into baby rats .contained areas of poorly differentiated hepatocellular carcinoma. In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes. Furthermore , an at least tenfold increase in the expression of the endogenous c myc gene was detected among transformed cell lines, suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.
文摘Islets from RIP-PDE3B mice, exhibiting β-cell specific overexpression of the cAMP/cGMP-degrading enzyme phosphodiesterase 3B (PDE3B) and dysregulated insulin secretion, were subjected to microarray analysis. We show that osteopontin (OPN) mRNA is increased in a dose-dependent manner in islets from RIP-PDE3B mice, as compared to wild-type islets. In addition, in silico analysis shows that PDE3B and OPN are interacting. Furthermore, OPN interacts with protein kinase CK2 ina distinct submodule of the protein-protein interaction network. We studied PDE3B and OPN proteins and, in some cases, also PDE1B and PDE4C, under conditions of relevance for insulin secretion. In the presence of forskolin, PDE inhibitors, insulin, or a protein kinase CK2 inhibitor, similar alterations in protein levels of PDE3B and OPN are shown. In summary, results from using a number of strategies demonstrate a connection between PDE3B and OPNas well as a role for protein kinase CK2 inpancreatic β-cells.
基金Supported by the National Institutes of Health,No.NIH BUILD Pilot 8UL1GM118970-02,NIH 1SC2HL134642-01the National Science Foundation,NSFPREM program,No.DMR:1205302the PREM Center for Energy and Biomaterials,No.DMR:1827745
文摘Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cellbased therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulinproducing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3 D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research.
基金Supported by(in part)All Saints Health Foundation
文摘The success achieved over the last decade with islet transplantation has intensified interest in treating diabetes,not only by cell transplantation,but also by stem cells.The formation of insulin-producing cells from pancreatic duct,acinar,and liver cells is an active area of investigation.Protocols for the in vitro differentiation of embryonic stem(ES)cells based on normal developmental processes,have generated insulin-producing cells,though at low efficiency and without full responsiveness to extracellular levels of glucose.Induced pluripotent stem cells,which have been generated from somatic cells by introducing Oct3/4,Sox2,Klf4,and c-Myc,and which are similar to ES cells in morphology,gene expression,epigenetic status and differentiation,can also differentiate into insulin-producing cells.Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. The purpose of this review is to demonstrate recent progress in the research for new sources ofβ-cells, and to discuss strategies for the treatment of diabetes.
文摘Aim: To identify the influence of pancreatic stellate cell (PSCs) secretions on gene expression profiles of Min6 cells by whole transcriptome sequencing. Methods: Pancreatic stellate cells (PSCs) were isolated from C57BL6J mice and propagated in vitro to acquire the activated phenotype. Total RNA was isolated from monocultured (MC) and PSC cocultured (CC) Min6 cells to prepare cDNA libraries, which were subjected to whole transcriptome sequencing for identifying differential expression of β-cell transcription factors (Pdx-1, Rfx6 and NeuroD1) related to insulin gene transcription and GSIS related genes such as Glut2, Gck, Abcc8, Kcnj11 and L-type Ca2+ channels (Cacnb2, Cacna1c). qRT-PCR was used to validate the gene expression. GSIS of Min6 cells was examined by estimating insulin levels in response to high glucose challenge. Results: Transcriptome analysis of discovery set revealed that coculture of Min6 cells with PSCs caused increased expression of β-cell specific genes (Ins1, Rfx6 and NeuroD1) concomitant with decreased expression of Pdx-1, MafA and Nkx2-2. Expression of GSIS associated genes (Glut2, Gck, Abcc8, Kcnj11 and Cacnb2) was decreased in such conditions. Validation by qRT-PCR in Min6 cells cocultured with PSCs revealed increased significant expression of Ins1 (2.1 ± 0.22 folds;p ≤ 0.001), Rfx6 (1.68 ± 0.23 folds;p ≤ 0.002) and NeuroD1 (0.96 ± 0.11 folds;p ≤ 0.01), accompanied by downregulation of Cacnb2 (-0.93 ± 0.57 folds;p ≤ 0.05). PSC secretions did not restore the GSIS from glucose unresponsive higher passage Min6 cells (MC: 1.33 ± 0.42;CC: 1.55 ± 0.72 pmol/mg protein;p = ns) upon high glucose stimulation. However, glucose responsive higher passage Min6 cells cocultured with PSCs presented increased insulin secretion (MC: 7.025 ± 0.64;CC: 14.84 ± 1.01 pmol/mg protein;p ≤ 0.04) concomitant with marginal increase of insulin contents. Conclusion: PSC secretions increase Ins1, Rfx6 and NeuroD1 gene expression, GSIS from glucose responsive Min6 cells, but do not restore the GSIS from glucose unresponsive Min6 cells.
基金supported by research grants from the National Natural Science Foundation of China(31600953 to X.Wang31530034 and 31330036 to F.Wang,31570791 and 91542205 to J.Min)+2 种基金the National Key R&D Program of China(2018YFA0507801 to J.Min and 2018YFA0507802 to F.Wang)the Zhejiang Provincial Natural Science Foundation of China(LQ15C110002 to X.Wang and LZ15H160002 to J.Min)the Nation Science and Technology Major Projects for Major New Drugs Innovation and Develop 2017ZX09101-005-004-002(L.Chen).
文摘Zinc levels are high in pancreatic β-cells, and zinc is involved in the synthesis, processing and secretion of insulin in these cells. However, precisely how cellular zinc homeostasis is regulated in pancreatic β-cells is poorly understood. By screening the expression of 14 Slc39a metal importer family member genes, we found that the zinc transporter Slc39a5 is significantly downregulated in pancreatic β-cells in diabetic db/db mice, obese ob/ob mice and high-fat diet-fed mice. Moreover,β-cell-specific Slc39a5 knockout mice have impaired insulin secretion. In addition, Slc39a5-deficient pancreatic islets have reduced glucose tolerance accompanied by reduced expression of Pgc-1α and its downstream target gene Glut2. The down-regulation of Glut2 in Slc39a5-deficient islets was rescued using agonists of Sirt1, Pgc-1α and Ppar-γ. At the mechanistic level, we found that Slc39a5-mediated zinc influx induces Glut2 expression via Sirt1-mediated Pgc-1α activation. These findings suggest that Slc39a5 may serve as a possible therapeutic target for diabetes-related conditions.
文摘The loss of or decreased functional pancreatic β-cell is a major cause of type 1 and type 2 diabetes. Previous studies have shown that adult β-cells can maintain their ability for a low level of turnover through replication and neogenesis. Thus, a strategy to prevent and treat dia- betes would be to enhance the ability of β-cells to increase the mass of functionalβ-cells. Consequently, much effort has been devoted to identify factors that can effectively induce β-cell expansion. This review focuses on recent reports on small molecules and protein fac- tors that have been shown to promote β-cell expansion.
基金supported by National Natural Science Foundation of China(Nos.81972893,and 82172719)Excellent Youth Science Foundation of Henan province(212300410071,China)Training program for young key teachers in Henan Province(2020GGJS019,China)。
文摘Type 2 diabetes mellitus(T2DM)therapy is facing the challenges of long-term medication and gradual destruction of pancreatic isletβ-cells.Therefore,it is timely to develop oral prolonged action formulations to improve compliance,while restoringβ-cells survival and function.Herein,we designed a simple nanoparticle with enhanced oral absorption and pancreas accumulation property,which combined apical sodiumdependent bile acid transporter-mediated intestinal uptake and lymphatic transportation.In this system,taurocholic acid(TCA)modified poly(lactic-co-glycolic acid)(PLGA)was employed to achieve pancreas location,hydroxychloroquine(HCQ)was loaded to execute therapeutic efficacy,and 1,2-dilauroyl-sn-glycero-3-phosphocholine(DLPC)was introduced as stabilizer together with synergist(PLGA-TCA/DLPC/HCQ).In vitro and in vivo results have proven that PLGA-TCA/DLPC/HCQ reversed the pancreatic islets damage and dysfunction,thus impeding hyperglycemia progression and restoring systemic glucose homeostasis via only once administration every day.In terms of mechanism PLGA-TCA/DLPC/HCQ ameliorated oxidative stress,remodeled the inflammatory pancreas microenvironment,and activated PI3K/AKT signaling pathway without obvious toxicity.This strategy not only provides an oral delivery platform for increasing absorption and pancreas targetability but also opens a new avenue for thorough T2DM treatment.