An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for opt...An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBE/V) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperrns were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.展开更多
The emerging RNA-Seq technology makes it possible to infer splicing variants from millions of short sequence reads. Here we present a method to identify isoforms by their specific signatures on chromosomes including b...The emerging RNA-Seq technology makes it possible to infer splicing variants from millions of short sequence reads. Here we present a method to identify isoforms by their specific signatures on chromosomes including both exons and junctions. By applying this method to a RNA-Seq dataset of gastric cancer, we showed that our method is more accurate and sensitive than other isoform inference tools such as RSEM and Cufflinks. By constructing a network from gene list identified by our method but missed by other tools, we found that some cancer-related genes enriched in network modules have significant implications for cancer drug discovery.展开更多
Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes a...Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes are encoded, designated full-length (contains the editase domain) and truncated (lacks this domain). Much is known about the full-length isoform, which plays a major role in regulating functions of voltage-gated ion channel proteins in the adult brain. In contrast, almost nothing is known about the functional significance of the truncated isoform. In situ hybridization shows that both isoform mRNA classes are maternally derived and transcripts for both localize primarily to the developing central nervous system. Quantitative RT-PCR shows that about 35% of all dADAR mRNA transcripts belong to the truncated class in embryos. 3’-RACE results show that abundance of the truncated isoform class is developmentally regulated, with a longer transcript appearing after the mid-blastula transition.3’-UTR sequences for the truncated isoform have been determined from diverse Drosophila species and important regulatory regions including stop codons have been mapped. Western analysis shows that both mRNA isoform classes are translated into protein during embryonic development, as full-length variant levels gradually diminish. The truncated protein isoform is present in every Drosophila species studied, extending over a period spanning about 40 x 106 years, implying a conserved function. Previous work has shown that a dADAR protein isoform binds to the evolutionarily conserved rnp-4f pre-mRNA stem-loop located in the 5’-UTR to regulate splicing, while no RNA editing was observed, suggesting the hypothesis that it is the non-catalytic truncated isoform which regulates splicing. To test this hypothesis, we have utilized RNAi technology, the results of which support the hypothesis. These results demonstrate a novel, non-catalytic function for the truncated dADAR protein isoform in Drosophila embryonic development, which is very likely evolutionarily conserved.展开更多
为了揭示钙调蛋白在桑树抗逆性方面的作用,利用SMART技术(switching mechanism at 5 end of RNA transcript)构建丰驰桑幼苗cDNA文库,从中获得2个钙调蛋白cDNA序列,2条序列的读码框均为450bp,均包括完整的3端非翻译区;序列比对分析发现,...为了揭示钙调蛋白在桑树抗逆性方面的作用,利用SMART技术(switching mechanism at 5 end of RNA transcript)构建丰驰桑幼苗cDNA文库,从中获得2个钙调蛋白cDNA序列,2条序列的读码框均为450bp,均包括完整的3端非翻译区;序列比对分析发现,2条序列ORF(open reading frame)同源性为86%,但氨基酸同源性却为98%,说明是2个钙调蛋白基因,命名为MCaM-1,MCaM-2.其中MCaM-1与拟南芥CaM7、胡萝卜CaM4的氨基酸同源性达100%.这表明钙调蛋白序列在植物中相当保守.展开更多
文摘An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBE/V) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperrns were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.
文摘The emerging RNA-Seq technology makes it possible to infer splicing variants from millions of short sequence reads. Here we present a method to identify isoforms by their specific signatures on chromosomes including both exons and junctions. By applying this method to a RNA-Seq dataset of gastric cancer, we showed that our method is more accurate and sensitive than other isoform inference tools such as RSEM and Cufflinks. By constructing a network from gene list identified by our method but missed by other tools, we found that some cancer-related genes enriched in network modules have significant implications for cancer drug discovery.
文摘Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes are encoded, designated full-length (contains the editase domain) and truncated (lacks this domain). Much is known about the full-length isoform, which plays a major role in regulating functions of voltage-gated ion channel proteins in the adult brain. In contrast, almost nothing is known about the functional significance of the truncated isoform. In situ hybridization shows that both isoform mRNA classes are maternally derived and transcripts for both localize primarily to the developing central nervous system. Quantitative RT-PCR shows that about 35% of all dADAR mRNA transcripts belong to the truncated class in embryos. 3’-RACE results show that abundance of the truncated isoform class is developmentally regulated, with a longer transcript appearing after the mid-blastula transition.3’-UTR sequences for the truncated isoform have been determined from diverse Drosophila species and important regulatory regions including stop codons have been mapped. Western analysis shows that both mRNA isoform classes are translated into protein during embryonic development, as full-length variant levels gradually diminish. The truncated protein isoform is present in every Drosophila species studied, extending over a period spanning about 40 x 106 years, implying a conserved function. Previous work has shown that a dADAR protein isoform binds to the evolutionarily conserved rnp-4f pre-mRNA stem-loop located in the 5’-UTR to regulate splicing, while no RNA editing was observed, suggesting the hypothesis that it is the non-catalytic truncated isoform which regulates splicing. To test this hypothesis, we have utilized RNAi technology, the results of which support the hypothesis. These results demonstrate a novel, non-catalytic function for the truncated dADAR protein isoform in Drosophila embryonic development, which is very likely evolutionarily conserved.
文摘为了揭示钙调蛋白在桑树抗逆性方面的作用,利用SMART技术(switching mechanism at 5 end of RNA transcript)构建丰驰桑幼苗cDNA文库,从中获得2个钙调蛋白cDNA序列,2条序列的读码框均为450bp,均包括完整的3端非翻译区;序列比对分析发现,2条序列ORF(open reading frame)同源性为86%,但氨基酸同源性却为98%,说明是2个钙调蛋白基因,命名为MCaM-1,MCaM-2.其中MCaM-1与拟南芥CaM7、胡萝卜CaM4的氨基酸同源性达100%.这表明钙调蛋白序列在植物中相当保守.