Zn2+ ions doped quasi-one-dimensional spin-chain materials LiCul-xZnxVO4(x=0, 0.1, 0.2) were prepared by solid-state reaction and the effect of nonmagnetic Zn2+ ions on the crystal structure, valence state and mag...Zn2+ ions doped quasi-one-dimensional spin-chain materials LiCul-xZnxVO4(x=0, 0.1, 0.2) were prepared by solid-state reaction and the effect of nonmagnetic Zn2+ ions on the crystal structure, valence state and magnetic proper- ties of them were studied by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and dc magnetization. The elongation of a and b axes and the shrinkage of c axis indicate a reduced effect of the Jahn-Teller distortion after Zn2+ ions doping, while the valence state of transition metal ions in LiCu1- xZnrVO4 remains unchanged since the equi- valence doping of Zn2+ ions on the Cu2+ sites. The corrected Bonner-Fisher equation fitting to the susceptibility indicates that isolated dimers and spins are created along with the departure from infinite spin chains to finite ones.展开更多
文摘Zn2+ ions doped quasi-one-dimensional spin-chain materials LiCul-xZnxVO4(x=0, 0.1, 0.2) were prepared by solid-state reaction and the effect of nonmagnetic Zn2+ ions on the crystal structure, valence state and magnetic proper- ties of them were studied by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and dc magnetization. The elongation of a and b axes and the shrinkage of c axis indicate a reduced effect of the Jahn-Teller distortion after Zn2+ ions doping, while the valence state of transition metal ions in LiCu1- xZnrVO4 remains unchanged since the equi- valence doping of Zn2+ ions on the Cu2+ sites. The corrected Bonner-Fisher equation fitting to the susceptibility indicates that isolated dimers and spins are created along with the departure from infinite spin chains to finite ones.