Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprol...Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.展开更多
Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the infl...Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the influence of the aziridine bonding agents family on the propellant aging. Aging of the prepared propellant samples was conducted as follows: 1. Four samples, one free of bonding agents, and three containing aziridine based bonding agents MAPO,HX-752, MAT4 were aged at 65°C. 2. Another four samples based on HX-752, MAT4 with different curing agents were aged at 65°C. The measured mechanical properties of the free bonding agent propellant samples were very far from the specifications and this illustrates the importance of the bonding agents in both the preparation and the aging phases.The prepared bonding agent 'MAT4' gave remarkable improvements of the mechanical properties comparing with HX-752 and MAPO. The aziridine bonding agents family inhibited the rate of decomposition of the propellant during the aging periods and supported the propellant matrix against decomposition at the elevate temperatures. Using of HMDI as curing agent gave slight better mechanical properties to the IPDI.展开更多
基金Project(2007168303) supported by Guangdong-Hong Kong Technology Cooperation Funding
文摘Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.
文摘Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the influence of the aziridine bonding agents family on the propellant aging. Aging of the prepared propellant samples was conducted as follows: 1. Four samples, one free of bonding agents, and three containing aziridine based bonding agents MAPO,HX-752, MAT4 were aged at 65°C. 2. Another four samples based on HX-752, MAT4 with different curing agents were aged at 65°C. The measured mechanical properties of the free bonding agent propellant samples were very far from the specifications and this illustrates the importance of the bonding agents in both the preparation and the aging phases.The prepared bonding agent 'MAT4' gave remarkable improvements of the mechanical properties comparing with HX-752 and MAPO. The aziridine bonding agents family inhibited the rate of decomposition of the propellant during the aging periods and supported the propellant matrix against decomposition at the elevate temperatures. Using of HMDI as curing agent gave slight better mechanical properties to the IPDI.