Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade.This work reported a synthesis of isosorbide-derived polyphosphonate(PICPP)as an anti-flammable agent for poly...Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade.This work reported a synthesis of isosorbide-derived polyphosphonate(PICPP)as an anti-flammable agent for poly(lactic acid)(PLA).The presence of PICPP notably declined the storage modulus of PLA/PICPP owing to the declined molecular weight of PLA catalyzed by the presence of PICPP.PLA and PLA/PICPP thermally degraded in one stage under either air or nitrogen atmosphere.With increasing the amount of PICPP,the onset thermal decomposition temperature of PLA/PICPP was decreased gradually,owing to the earlier decomposition of PICPP.With only 10 wt%of PICPP,PLA/PICPP-10 achieved a high limiting oxygen index of 30.0%and UL-94 V-0 classification,manifesting that PICPP was an efficient anti-flammable agent for PLA.The inclusion of 15 wt%PICPP also caused 33%and 16%decline in PHRR and THR of PLA,respectively.TG-IR results clarified that PLA/PICPP produced the less typical pyrolysis products especially flammable carbonyls than PLA,which may account for the suppressed PHRR and THR values of PLA/PICPP.展开更多
Sustainable synthesis of isosorbide, an important renewable platform chemical, from sorbitol and cellulose, has attracted increasing attention, but still remains challenging. Here, we have studied the effects of the a...Sustainable synthesis of isosorbide, an important renewable platform chemical, from sorbitol and cellulose, has attracted increasing attention, but still remains challenging. Here, we have studied the effects of the acidity on the dehydration of sorbitol in water on a variety of solid acids, including zeolites, sulfonic materials, montmorillonite and mixed SiO2-Al2O3 oxide. These solid acids showed markedly different activities, which were found to be closely related to their strong Brønsted acid sites, while the weak Brønsted acid and Lewis acid sites were essentially inactive. Different from the other solid acids examined, H-ZSM-5 zeolites in a wide range of Si/Al molar ratios(25-300) exhibited superior selectivities to isosorbide in dehydration of sorbitol, consistent with the observed difference in their formation rates of the 1,4-sortbitan and 3,6-sorbitan intermediates. Kinetic studies on the sorbitol dehydration showed that 3,6-sorbitan, once it formed, dehydrated to isosorbide more readily than 1,4-sorbitan by a factor of 19, and the formation rate constant of 3,6-sorbitan on H-ZSM-5(Si/Al=25) was about three times higher than that of H-Beta(Si/Al=25). Such favorable formation of the reactive 3,6-sorbitan intermediate and the higher isosorbide selectivity on H-ZSM-5 appear to be induced by its confined pore structure composed of the paired 5-membered rings. H-ZSM-5 was also found to be efficient for the direct conversion of cellulose to isosorbide in coupling with Ru/C hydrogenation catalyst. This work provides fundamental insights into the acidity and pore structures that are helpful for the design of novel solid acids toward the efficient synthesis of isosorbide from the dehydration of sorbitol and even directly from the tandem reaction of cellulose.展开更多
采用不同的载体,制备了多种固体酸催化剂,并对其催化山梨醇脱水的反应活性进行了研究,进一步对催化效果较好的固体酸进行反应条件优化,考察了催化剂用量、反应压力、反应温度和反应时间对山梨醇脱水反应的影响。结果表明,以活性炭为载...采用不同的载体,制备了多种固体酸催化剂,并对其催化山梨醇脱水的反应活性进行了研究,进一步对催化效果较好的固体酸进行反应条件优化,考察了催化剂用量、反应压力、反应温度和反应时间对山梨醇脱水反应的影响。结果表明,以活性炭为载体的固体酸催化剂催化性能较好。在反应压力为6.3 k Pa,催化剂和山梨醇质量比为1:4,温度为140℃,山梨醇脱水反应6 h的条件下,异山梨醇的收率较高,为91.0%。展开更多
基金The work was financially supported by the Hong Kong Scholars Program(Grant No.XJ2020003)the Basic Research Program of Jiangnan University(JUSRP121029).
文摘Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade.This work reported a synthesis of isosorbide-derived polyphosphonate(PICPP)as an anti-flammable agent for poly(lactic acid)(PLA).The presence of PICPP notably declined the storage modulus of PLA/PICPP owing to the declined molecular weight of PLA catalyzed by the presence of PICPP.PLA and PLA/PICPP thermally degraded in one stage under either air or nitrogen atmosphere.With increasing the amount of PICPP,the onset thermal decomposition temperature of PLA/PICPP was decreased gradually,owing to the earlier decomposition of PICPP.With only 10 wt%of PICPP,PLA/PICPP-10 achieved a high limiting oxygen index of 30.0%and UL-94 V-0 classification,manifesting that PICPP was an efficient anti-flammable agent for PLA.The inclusion of 15 wt%PICPP also caused 33%and 16%decline in PHRR and THR of PLA,respectively.TG-IR results clarified that PLA/PICPP produced the less typical pyrolysis products especially flammable carbonyls than PLA,which may account for the suppressed PHRR and THR values of PLA/PICPP.
基金This work was supported by the National Natural Science Foundation of China (Nos.22032001,21832001,21821004,21690081)the Project of the Beijing National Laboratory for Molecular Sciences,China(No.BNLMS-CXXM-201905).
文摘Sustainable synthesis of isosorbide, an important renewable platform chemical, from sorbitol and cellulose, has attracted increasing attention, but still remains challenging. Here, we have studied the effects of the acidity on the dehydration of sorbitol in water on a variety of solid acids, including zeolites, sulfonic materials, montmorillonite and mixed SiO2-Al2O3 oxide. These solid acids showed markedly different activities, which were found to be closely related to their strong Brønsted acid sites, while the weak Brønsted acid and Lewis acid sites were essentially inactive. Different from the other solid acids examined, H-ZSM-5 zeolites in a wide range of Si/Al molar ratios(25-300) exhibited superior selectivities to isosorbide in dehydration of sorbitol, consistent with the observed difference in their formation rates of the 1,4-sortbitan and 3,6-sorbitan intermediates. Kinetic studies on the sorbitol dehydration showed that 3,6-sorbitan, once it formed, dehydrated to isosorbide more readily than 1,4-sorbitan by a factor of 19, and the formation rate constant of 3,6-sorbitan on H-ZSM-5(Si/Al=25) was about three times higher than that of H-Beta(Si/Al=25). Such favorable formation of the reactive 3,6-sorbitan intermediate and the higher isosorbide selectivity on H-ZSM-5 appear to be induced by its confined pore structure composed of the paired 5-membered rings. H-ZSM-5 was also found to be efficient for the direct conversion of cellulose to isosorbide in coupling with Ru/C hydrogenation catalyst. This work provides fundamental insights into the acidity and pore structures that are helpful for the design of novel solid acids toward the efficient synthesis of isosorbide from the dehydration of sorbitol and even directly from the tandem reaction of cellulose.
文摘采用不同的载体,制备了多种固体酸催化剂,并对其催化山梨醇脱水的反应活性进行了研究,进一步对催化效果较好的固体酸进行反应条件优化,考察了催化剂用量、反应压力、反应温度和反应时间对山梨醇脱水反应的影响。结果表明,以活性炭为载体的固体酸催化剂催化性能较好。在反应压力为6.3 k Pa,催化剂和山梨醇质量比为1:4,温度为140℃,山梨醇脱水反应6 h的条件下,异山梨醇的收率较高,为91.0%。