Alcohol dehydrogenase (ADH) catalyzes the interconversion of aldehydes and their corresponding alcohols, and is a key enzyme in volatile ester biosynthesis. However, little is known regarding ADH and ADH encoding ge...Alcohol dehydrogenase (ADH) catalyzes the interconversion of aldehydes and their corresponding alcohols, and is a key enzyme in volatile ester biosynthesis. However, little is known regarding ADH and ADH encoding genes (ADHs) in pear. We identified 8 ADHs in the pear's genome (PbrADHs) by multiple sequences alignment. The PbrADHs were highly ho- mologous in their coding regions, while were diversiform in structure. 9 introns were predicted in PbrADH3-PbrADH8, while 8 introns, generated through exon fusion and intron loss, were predicted in PbrADH1 and PbrADH2. To study the genetic regulation underlying aroma biogenesis in pear fruit, we determined the PbrADH transcripts, ADH activities and volatile contents of fruits during ripening stage for Nanguoli and Dangshansuli, two cultivars having different aroma characteristics. ADH activity was strongly associated with the transcription of ADH~ in the two cultivars during fruit ripening stage. The higher ester content paralleling to a higher ADH activity was detected in Nanguoli than in Dangshansuli, so it is induced that the lower ester content in Dangshansuli fruit may be the result of weak ADH activity. The present study revealed that total ADH activity and volatile ester production correlated with increased PbrADHstranscript levels. PbrADH6 may contribute to ADH activity catalyzing aldehyde reduction and ester formation in pear fruit.展开更多
Aldehyde dehydrogenases(ALDHs) represent a large protein family, which includes several members that catalyze the oxidation of an aldehyde to its corresponding carboxylic acid in plants. Genes encoding members of th...Aldehyde dehydrogenases(ALDHs) represent a large protein family, which includes several members that catalyze the oxidation of an aldehyde to its corresponding carboxylic acid in plants. Genes encoding members of the ALDH7 subfamily have been suggested to play important roles in various stress adaptations in plants. In this study, quantitative RT-PCR analysis revealed that a maize ALDH7 subfamily member(ZmALDH7B6) was constitutively expressed in various organs, including roots, leaves, immature ears, tassels, and developing seeds. The abundance of ZmALDH7B6 mRNA transcripts in maize roots was increased by ammonium, NaCl, and mannitol treatments. To further analyze tissue-specific and stress-induced expression patterns, the 1.5-kb 5′-flanking ZmALDH7B6 promoter region was fused to the β-glucuronidase(GUS) reporter gene and introduced into maize plants. In roots of independent transgenic lines, there was significant induction of GUS activity in response to ammonium supply, confirming ammonium-dependent expression of ZmALDH7B6 at the transcript level. Histochemical staining showed that GUS activity driven by the ZmALDH7B6 promoter was mainly localized in the vascular tissues of maize roots. These results suggested that ZmALDH7B6 is induced by multiple environmental stresses in maize roots, and may play a role in detoxifying aldehydes, particularly in vascular tissue.展开更多
Objective Isocitrate dehydrogenase gene(IDH)mutations are associated with tumor angiogenesis and therefore play an important role in glioma management.This study compared the performance of tumor blood vessels counted...Objective Isocitrate dehydrogenase gene(IDH)mutations are associated with tumor angiogenesis and therefore play an important role in glioma management.This study compared the performance of tumor blood vessels counted from contrast-enhanced 3D brain volume(3D-BRAVO)sequence and dynamic contrast-enhanced(DCE)MRI in differentiating IDH1 status in gliomas.Methods Forty-four glioma patients[16 with IDH1 mutant-type(IDH1-MT),28 with IDH1 wild-type(IDH1-WT)]were retrospectively analyzed.A blood vessel entering a tumor was defined as an intratumoral vessel;a blood vessel adjacent to the edge of a tumor was defined as a peritumoral vessel.Combined vessels were defined as the sum of the intratumoral and peritumoral vessels.DCE-derived metrics of tumor were normalized to the contralateral normal-appearing white matter.Results Intratumoral,peritumoral,and combined tumor blood vessels were all significantly different between IDH1-MT and IDH1-WT gliomas,and the range of area under curves(AUCs)was 0.816–0.855.For DCE-derived parameters,cerebral blood volume,cerebral blood flow,mean transit time,and volume transfer constant were significantly different between IDH1-MT and IDH1-WT gliomas,and the range of AUCs was 0.703–0.756.Combined vessels possessed the best performance for identifying IDH1 mutations in gliomas(AUC:0.855,sensitivity:0.857,specificity:0.812,P<0.001).Conclusion The number of tumor blood vessels has comparable diagnostic performance with DCE-derived parameters for differentiating IDH1 mutations and can serve as a potential imaging biomarker to reflect IDH1 mutations in gliomas.展开更多
Cytokinins are a class of phytohormones that promote cell division and differentiation and are thought to affect plant immunity to multiple pathogens.However,a comprehensive analysis of cytokinin dehydrogenase/oxidase...Cytokinins are a class of phytohormones that promote cell division and differentiation and are thought to affect plant immunity to multiple pathogens.However,a comprehensive analysis of cytokinin dehydrogenase/oxidase(CKX)family genes in cabbage has not been reported.In this study,a total of 36 CKX genes were identified using a genome-wide search method.Phylogenetic analysis classified these genes into three groups.They were distributed unevenly across nine chromosomes in B.oleracea,and 15 of them did not contain any introns.The results of colinearity analysis showed that 36 CKX gene in Arabidopsis was present in several copies in the Brassica oleracea genome.An analysis of cisacting elements indicated that all genes possessed at least one stress or hormone responsive cis-acting element.A heatmap of CKX gene expression showed the patterns of expression of these genes in various tissues and organs.Three genes(Bol028363,Bol031036 and Bol018140)were relatively highly expressed in all of the investigated tissues under normal conditions,showing the expression profile of housekeeping genes.Generally,the expression patterns of CKX genes in Jingfeng 1 and Xiangan 336 were quite different under the same treatment.Notably,three genes(Bol020547,Bol028392 and Bol045724)were significantly down-regulated and up-regulated in the susceptible and resistant material,respectively,after inoculation,which may indicate their crucial roles in resistance to clubroot disease.The results provide insights for better understanding the roles of CKX genes in the B.oleracea–P.brassicae interaction.展开更多
To investigate the relationship between G1958A gene polymorphism of methylenetetrahydrofolate dehydrogenase (MTHFD) and occurrence of congenital heart disease (CHD) in North China. Methods One hundred and ninety-two...To investigate the relationship between G1958A gene polymorphism of methylenetetrahydrofolate dehydrogenase (MTHFD) and occurrence of congenital heart disease (CHD) in North China. Methods One hundred and ninety-two CHD patients and their parents were included in this study as case group in Liaoning Province by birth defect registration cards, and 124 healthy subjects (age and gender matched) and their parents were simultaneously selected from the same geographic area as control. Their gene polymorphism of MTHFD G1958A locus was examined with PCR-RFLP, and serum folic acid and homocysteine (Hcy) levels were tested with radio-immunoassay and fluorescence polarization immunoassay (FPIA). Results There existed gene polymorphism at MTHFD G1958A locus in healthy subjects living in North China. The percentages of GG, GA, and AA genotype were 57.98%, 35.57%, and 6.45% respectively, and the A allele frequency was 24.23%, which was significantly different from Western population. No difference was observed when comparing genotype distribution and allele frequency between the case and control groups, so was the result from the comparison between genders. The A allele frequency of arterial septal defect patients’ mothers (10.87%) was significantly lower than that of controls (28.15%) (P=0.014), with OR=0.31 (95% CI: 0.09-0.84), and no difference in the other subgroups. The percentage of at least one parent carrying A allele in arterial septal defect subgroup (43.48%) was significantly lower than that in controls (69.64%) (P=0.017), with OR=0.34 (95% CI: 0.12-0.92). The analysis of genetic transmission indicated that there was no transmission disequillibrium in CHD nuclear families. Their serum folic acid level was significantly higher than that of controls (P=0.000), and Hcy level of the former was higher than that of the latter with no statistical significance (P>0.05). Serum Hcy and folic acid levels of mothers with gene mutation were lower than those of mothers with no mutation. Conclusion No significant difference of genotype distribution and allele frequency existed between CHD patients and healthy population. MTHFD G1958A mutation in parents (particularly in mother) can decrease the risk of arterial septal defect in offspring. The possible mechanism of protection might be mutation, which can increase MTHFD enzyme activity, folic acid metabolism and homocysteine remethylation, and decrease Hcy level.展开更多
A 855 bp cDNA encoding L-galactono-1,4-lactone dehydrogenase (GalLDH) fragment was cloned from fruit of R. roxburghii Tratt by the method of RT-PCR, on the basis of the homologous genes of Arabidopsis thaliana, caul...A 855 bp cDNA encoding L-galactono-1,4-lactone dehydrogenase (GalLDH) fragment was cloned from fruit of R. roxburghii Tratt by the method of RT-PCR, on the basis of the homologous genes of Arabidopsis thaliana, cauliflower, sweet potato, strawberry, etc. in GenBank. Sequence analysis showed 79-92% identity in nucleotide sequence and 75-87% identity in amino acid sequence to that of strawberry and Arabidopsis thaliana, etc. Northern blot showed that the expression of GalLDH was significantly different in different organs. The transcription level of GalLDH in fruit was significantly higher than that in leaf, stem and root respectively. Furthermore, this expression mode was highly correlated with AsA levels.展开更多
AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-cont...AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-control study was conducted in 190 cases and 223 population-based controls. ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A)genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC). Information on smoking and drinking was collected and odds ratio (OR) was estimated. RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Signif icant interactions between ADH2, ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a signif icantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ADH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with the ALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele. CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also signifi cant gene-gene and gene- environment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.展开更多
Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vanname...Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vannamei) were investigated.This involved an examination of growth performance,glutamate dehydrogenase(GDH) and Na+-K+ ATPase mRNA expression,,and GDH activity in muscles and gills.Three experimental diets were formulated,containing 25%,40%,and 50% dietary protein,and fed to the shrimp at a salinity of 25.After 20 days,no significant difference was observed in weight gain,though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels.Subsequently,shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5,respectively,and sampled at weeks 1 and 2.Shrimp fed with 40% protein at 25 in salinity(optimal conditions) were used as a control.Regardless of the salinities,shrimp fed with 50% dietary protein had significantly higher growth performance than other diets;no significant differences were found in comparison with the control.Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks.Ambient salinity change also stimulated the hepatosomatic index,which increased in the first week and then recovered to a relatively normal level,as in the control,after 2 weeks.These findings indicate that in white shrimp,the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism.Increased dietary protein level could improve the osmoregulation capacity of L.vannamei with more energy resources allocated to GDH activity and expression.展开更多
The multiple molecular forms of cytoplasmic malate dehydrogenase (cMDH), mitochondrial malate dehydrogenase (mMDH ) and lactate dehydrogenase (LDH ) were studied in the liver and skeletal muscle of the freshwater catf...The multiple molecular forms of cytoplasmic malate dehydrogenase (cMDH), mitochondrial malate dehydrogenase (mMDH ) and lactate dehydrogenase (LDH ) were studied in the liver and skeletal muscle of the freshwater catfish, Clarias batrachus. There were two electrophoretically distinguishable bands (AA andBB) of cMDH and mMDH which suggests that they are apparently encoded at two gene loci (A and B) in both the tissues.However, the presence of a single band (LDH-1 ) of LDH in liver and double bands (LDH-1and LDH-2) in skeletal muscle in which LDH-2 was predominant reflects the differential expression of LDH genes in different metabolic tissues to meet the requirement of energy production. The AA isoform (74 kd) of liver cMDH was smaller than those of the AA form (110 kd) of skeletal muscle. In contrast, the BB isoform of liver (42 kd) and skeletal muscle (54 kd) were more or less similar in size. Unlike the case of cMDH, the molecular weight of AA isoform (115 kd) of liver mMDH was higher than those of the AA form (87kd) of skeletal muscle. Whereas the molecular weight of BB isoform (58 kd) of liver was in proximity to the weight of BB form (44 kd) of skeletal muscle mMDH. The size of AA isoform (74 kd) of liver cMDH was smaller, while the AA isoform (110 kd) of skeletal muscle was larger as compared to AA form of mMDH in the liver (115 kd) and skeletal muscle (87 kd). But the size of BB isoform of both the isozymes was almost equal in these metabolic tissues. The molecular weight of liver LDH-1 (96 kd) was close to the weight of LDH-1 (82 kd) in skeletal muscle. The molecular weight of skeletal muscle LDH-2 was deduced as 37 kd which is much more lower than the weight of LDH-1 in liver and skeletal muscle. The smaller size of LDH-2 in skeletal muscle may be of a physiological significance in this anaerobic tissue展开更多
Objective: To construct a prokaryotic recombinant vector for mouse lactate dehydrogenase-C and to detect its expression in BL21. Methods: The coding sequence of mouse lactate dehydrogenase subunit C was amplified from...Objective: To construct a prokaryotic recombinant vector for mouse lactate dehydrogenase-C and to detect its expression in BL21. Methods: The coding sequence of mouse lactate dehydrogenase subunit C was amplified from mouse testis RNA with specific primers and cloned into pGEX-2T after restriction digestion with BamH I and EcoR I. GST fusion protein was expressed after induction with IPTG. Results: Sequencing and restriction digestion of the recombinant plasmid revealed the coding sequence for mouse lactate dehydrogenase subunit C. A protein band of about 60 000 could be induced by IPTG in the recombinant plasmid. Conclusion: The coding sequence of mouse lactate dehydrogenase subunit C was introduced into the pGEX-2T plasmid and a GST-fused protein could be induced at a high level.展开更多
Mycorrhizal roots of the deciduous trees European beech (Fagus sylvatica (L.)) and Sessile oak (Quercus petraea (MattuschkaLiebl.)) and the conifers Norway spruce (Picea abies (L.) H. Karst.) and European larch (Larix...Mycorrhizal roots of the deciduous trees European beech (Fagus sylvatica (L.)) and Sessile oak (Quercus petraea (MattuschkaLiebl.)) and the conifers Norway spruce (Picea abies (L.) H. Karst.) and European larch (Larix decidua (Mill.)) associated with the ectomycorrhizal fungi matt bolete (Xerocomus pruinatus (Fries 1835)) or bay bolete (X. badius (Fries 1818)) were analysed with respect to the occurrence of dihydrolipoyl dehydrogenase (EC 1.8.1.4) allozymes. In root tissues of the two deciduous trees, two gene loci could be visualized after cellulose acetate electrophoresis while three loci were expressed in root tissues of the two coniferous species. The two fungal species and further ectomycorrhizal fungi expressed exclusively one dihydrolipoyl dehydrogenase gene. In Xerocomus pruinatus and X. badius, the dihydrolipoyl dehydrogenase gene consists of 1460 bp and 1370 bp, respectively, including five introns each consisting of 52 bp. Their DNA sequences correspond to 70 to 90% to other fungal dihydrolipoyl dehydrogenase genes. One monomer of the dimeric dihydrolipoyl dehydrogenase enzyme consists of 486 (X. pruinatus) or 454 (X. badius) amino acids which sum up to a molecular mass of 55 kDa (X. pruinatus), respectively 52 kDa (X. badius). The number of positively charged amino acid residues makes 79 (X. pruinatus) and 68 (X. badius) and the number of negatively charged amino acid residues was calculated to make 46 (X. pruinatus) and 48 (X. badius);isoelectric points make 9.99 (X. pruinatus) and 9.68 (X. badius). Calculated three dimensional structures reveal a short NADH binding site being part of a larger FAD-binding site and a binding/dimerization domain.展开更多
基金financially supported by the National Natural Science Foundation of China(31301739)the Key Technologies R&D Program of China during the 12th Five-year Plan Period(2013BAD02B01-4)
文摘Alcohol dehydrogenase (ADH) catalyzes the interconversion of aldehydes and their corresponding alcohols, and is a key enzyme in volatile ester biosynthesis. However, little is known regarding ADH and ADH encoding genes (ADHs) in pear. We identified 8 ADHs in the pear's genome (PbrADHs) by multiple sequences alignment. The PbrADHs were highly ho- mologous in their coding regions, while were diversiform in structure. 9 introns were predicted in PbrADH3-PbrADH8, while 8 introns, generated through exon fusion and intron loss, were predicted in PbrADH1 and PbrADH2. To study the genetic regulation underlying aroma biogenesis in pear fruit, we determined the PbrADH transcripts, ADH activities and volatile contents of fruits during ripening stage for Nanguoli and Dangshansuli, two cultivars having different aroma characteristics. ADH activity was strongly associated with the transcription of ADH~ in the two cultivars during fruit ripening stage. The higher ester content paralleling to a higher ADH activity was detected in Nanguoli than in Dangshansuli, so it is induced that the lower ester content in Dangshansuli fruit may be the result of weak ADH activity. The present study revealed that total ADH activity and volatile ester production correlated with increased PbrADHstranscript levels. PbrADH6 may contribute to ADH activity catalyzing aldehyde reduction and ester formation in pear fruit.
基金financially supported by the National 863 Program of China(2012AA100306)the National 973 Program of China(2011CB100305)+1 种基金the National Natural Science Foundation of China(30971863,31121062)the Ministry of Agriculture of China(2011ZX08003-005)
文摘Aldehyde dehydrogenases(ALDHs) represent a large protein family, which includes several members that catalyze the oxidation of an aldehyde to its corresponding carboxylic acid in plants. Genes encoding members of the ALDH7 subfamily have been suggested to play important roles in various stress adaptations in plants. In this study, quantitative RT-PCR analysis revealed that a maize ALDH7 subfamily member(ZmALDH7B6) was constitutively expressed in various organs, including roots, leaves, immature ears, tassels, and developing seeds. The abundance of ZmALDH7B6 mRNA transcripts in maize roots was increased by ammonium, NaCl, and mannitol treatments. To further analyze tissue-specific and stress-induced expression patterns, the 1.5-kb 5′-flanking ZmALDH7B6 promoter region was fused to the β-glucuronidase(GUS) reporter gene and introduced into maize plants. In roots of independent transgenic lines, there was significant induction of GUS activity in response to ammonium supply, confirming ammonium-dependent expression of ZmALDH7B6 at the transcript level. Histochemical staining showed that GUS activity driven by the ZmALDH7B6 promoter was mainly localized in the vascular tissues of maize roots. These results suggested that ZmALDH7B6 is induced by multiple environmental stresses in maize roots, and may play a role in detoxifying aldehydes, particularly in vascular tissue.
基金the National Natural Science Foundation of China(No.81730049 and No.81801666)the Fundamental Research Funds for the Central Universities,HUST(No.2019JYCXJJ044).
文摘Objective Isocitrate dehydrogenase gene(IDH)mutations are associated with tumor angiogenesis and therefore play an important role in glioma management.This study compared the performance of tumor blood vessels counted from contrast-enhanced 3D brain volume(3D-BRAVO)sequence and dynamic contrast-enhanced(DCE)MRI in differentiating IDH1 status in gliomas.Methods Forty-four glioma patients[16 with IDH1 mutant-type(IDH1-MT),28 with IDH1 wild-type(IDH1-WT)]were retrospectively analyzed.A blood vessel entering a tumor was defined as an intratumoral vessel;a blood vessel adjacent to the edge of a tumor was defined as a peritumoral vessel.Combined vessels were defined as the sum of the intratumoral and peritumoral vessels.DCE-derived metrics of tumor were normalized to the contralateral normal-appearing white matter.Results Intratumoral,peritumoral,and combined tumor blood vessels were all significantly different between IDH1-MT and IDH1-WT gliomas,and the range of area under curves(AUCs)was 0.816–0.855.For DCE-derived parameters,cerebral blood volume,cerebral blood flow,mean transit time,and volume transfer constant were significantly different between IDH1-MT and IDH1-WT gliomas,and the range of AUCs was 0.703–0.756.Combined vessels possessed the best performance for identifying IDH1 mutations in gliomas(AUC:0.855,sensitivity:0.857,specificity:0.812,P<0.001).Conclusion The number of tumor blood vessels has comparable diagnostic performance with DCE-derived parameters for differentiating IDH1 mutations and can serve as a potential imaging biomarker to reflect IDH1 mutations in gliomas.
基金supported by the Youth Science Fund Project(Grant No. 31801876)。
文摘Cytokinins are a class of phytohormones that promote cell division and differentiation and are thought to affect plant immunity to multiple pathogens.However,a comprehensive analysis of cytokinin dehydrogenase/oxidase(CKX)family genes in cabbage has not been reported.In this study,a total of 36 CKX genes were identified using a genome-wide search method.Phylogenetic analysis classified these genes into three groups.They were distributed unevenly across nine chromosomes in B.oleracea,and 15 of them did not contain any introns.The results of colinearity analysis showed that 36 CKX gene in Arabidopsis was present in several copies in the Brassica oleracea genome.An analysis of cisacting elements indicated that all genes possessed at least one stress or hormone responsive cis-acting element.A heatmap of CKX gene expression showed the patterns of expression of these genes in various tissues and organs.Three genes(Bol028363,Bol031036 and Bol018140)were relatively highly expressed in all of the investigated tissues under normal conditions,showing the expression profile of housekeeping genes.Generally,the expression patterns of CKX genes in Jingfeng 1 and Xiangan 336 were quite different under the same treatment.Notably,three genes(Bol020547,Bol028392 and Bol045724)were significantly down-regulated and up-regulated in the susceptible and resistant material,respectively,after inoculation,which may indicate their crucial roles in resistance to clubroot disease.The results provide insights for better understanding the roles of CKX genes in the B.oleracea–P.brassicae interaction.
基金This work was supported by the Major State Basic Research Development Program of People’s Republic of China (G1999055904)and the Danone’s Diet and Nutrition Research and Education Grant (DIC2002-08).
文摘To investigate the relationship between G1958A gene polymorphism of methylenetetrahydrofolate dehydrogenase (MTHFD) and occurrence of congenital heart disease (CHD) in North China. Methods One hundred and ninety-two CHD patients and their parents were included in this study as case group in Liaoning Province by birth defect registration cards, and 124 healthy subjects (age and gender matched) and their parents were simultaneously selected from the same geographic area as control. Their gene polymorphism of MTHFD G1958A locus was examined with PCR-RFLP, and serum folic acid and homocysteine (Hcy) levels were tested with radio-immunoassay and fluorescence polarization immunoassay (FPIA). Results There existed gene polymorphism at MTHFD G1958A locus in healthy subjects living in North China. The percentages of GG, GA, and AA genotype were 57.98%, 35.57%, and 6.45% respectively, and the A allele frequency was 24.23%, which was significantly different from Western population. No difference was observed when comparing genotype distribution and allele frequency between the case and control groups, so was the result from the comparison between genders. The A allele frequency of arterial septal defect patients’ mothers (10.87%) was significantly lower than that of controls (28.15%) (P=0.014), with OR=0.31 (95% CI: 0.09-0.84), and no difference in the other subgroups. The percentage of at least one parent carrying A allele in arterial septal defect subgroup (43.48%) was significantly lower than that in controls (69.64%) (P=0.017), with OR=0.34 (95% CI: 0.12-0.92). The analysis of genetic transmission indicated that there was no transmission disequillibrium in CHD nuclear families. Their serum folic acid level was significantly higher than that of controls (P=0.000), and Hcy level of the former was higher than that of the latter with no statistical significance (P>0.05). Serum Hcy and folic acid levels of mothers with gene mutation were lower than those of mothers with no mutation. Conclusion No significant difference of genotype distribution and allele frequency existed between CHD patients and healthy population. MTHFD G1958A mutation in parents (particularly in mother) can decrease the risk of arterial septal defect in offspring. The possible mechanism of protection might be mutation, which can increase MTHFD enzyme activity, folic acid metabolism and homocysteine remethylation, and decrease Hcy level.
基金supported by the Natural Science Foundation of Guizhou Province of China(20033019 and 20043025).
文摘A 855 bp cDNA encoding L-galactono-1,4-lactone dehydrogenase (GalLDH) fragment was cloned from fruit of R. roxburghii Tratt by the method of RT-PCR, on the basis of the homologous genes of Arabidopsis thaliana, cauliflower, sweet potato, strawberry, etc. in GenBank. Sequence analysis showed 79-92% identity in nucleotide sequence and 75-87% identity in amino acid sequence to that of strawberry and Arabidopsis thaliana, etc. Northern blot showed that the expression of GalLDH was significantly different in different organs. The transcription level of GalLDH in fruit was significantly higher than that in leaf, stem and root respectively. Furthermore, this expression mode was highly correlated with AsA levels.
基金(in part) A Grant-in Aid for International Scientifi c ResearchSpecial Cancer Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan, No. 11137311Major International (Regional) Joint Research Projects from the National Natural Science Foundation of China (NSFC), No. 30320140461
文摘AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males. METHODS: A case-control study was conducted in 190 cases and 223 population-based controls. ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A)genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC). Information on smoking and drinking was collected and odds ratio (OR) was estimated. RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Signif icant interactions between ADH2, ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a signif icantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ADH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with the ALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele. CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also signifi cant gene-gene and gene- environment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.
基金Supported by the National Natural Science Foundation of China(Nos. 31001098 and 30771670)the National High Technology R&D Program (863 Program) (No. 2006BAD01A13)+5 种基金the National Basic Research Program of China (973 Program) (No. 2009CB118702)Shanghai Committee of Science and Technology,China (Nos.08DZ1906401,09ZR1409800,10JC1404100)Shanghai Agriculture Science and Technology Key Grant (No.2-1,2009)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 200802690012)partially by the E-Institute of Shanghai Municipal Education Commission (No. E03009)the Key and Open Laboratory of Marine and Estuarine Fisheries Resources and Ecology,Ministry of Agriculture
文摘Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vannamei) were investigated.This involved an examination of growth performance,glutamate dehydrogenase(GDH) and Na+-K+ ATPase mRNA expression,,and GDH activity in muscles and gills.Three experimental diets were formulated,containing 25%,40%,and 50% dietary protein,and fed to the shrimp at a salinity of 25.After 20 days,no significant difference was observed in weight gain,though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels.Subsequently,shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5,respectively,and sampled at weeks 1 and 2.Shrimp fed with 40% protein at 25 in salinity(optimal conditions) were used as a control.Regardless of the salinities,shrimp fed with 50% dietary protein had significantly higher growth performance than other diets;no significant differences were found in comparison with the control.Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks.Ambient salinity change also stimulated the hepatosomatic index,which increased in the first week and then recovered to a relatively normal level,as in the control,after 2 weeks.These findings indicate that in white shrimp,the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism.Increased dietary protein level could improve the osmoregulation capacity of L.vannamei with more energy resources allocated to GDH activity and expression.
文摘The multiple molecular forms of cytoplasmic malate dehydrogenase (cMDH), mitochondrial malate dehydrogenase (mMDH ) and lactate dehydrogenase (LDH ) were studied in the liver and skeletal muscle of the freshwater catfish, Clarias batrachus. There were two electrophoretically distinguishable bands (AA andBB) of cMDH and mMDH which suggests that they are apparently encoded at two gene loci (A and B) in both the tissues.However, the presence of a single band (LDH-1 ) of LDH in liver and double bands (LDH-1and LDH-2) in skeletal muscle in which LDH-2 was predominant reflects the differential expression of LDH genes in different metabolic tissues to meet the requirement of energy production. The AA isoform (74 kd) of liver cMDH was smaller than those of the AA form (110 kd) of skeletal muscle. In contrast, the BB isoform of liver (42 kd) and skeletal muscle (54 kd) were more or less similar in size. Unlike the case of cMDH, the molecular weight of AA isoform (115 kd) of liver mMDH was higher than those of the AA form (87kd) of skeletal muscle. Whereas the molecular weight of BB isoform (58 kd) of liver was in proximity to the weight of BB form (44 kd) of skeletal muscle mMDH. The size of AA isoform (74 kd) of liver cMDH was smaller, while the AA isoform (110 kd) of skeletal muscle was larger as compared to AA form of mMDH in the liver (115 kd) and skeletal muscle (87 kd). But the size of BB isoform of both the isozymes was almost equal in these metabolic tissues. The molecular weight of liver LDH-1 (96 kd) was close to the weight of LDH-1 (82 kd) in skeletal muscle. The molecular weight of skeletal muscle LDH-2 was deduced as 37 kd which is much more lower than the weight of LDH-1 in liver and skeletal muscle. The smaller size of LDH-2 in skeletal muscle may be of a physiological significance in this anaerobic tissue
文摘Objective: To construct a prokaryotic recombinant vector for mouse lactate dehydrogenase-C and to detect its expression in BL21. Methods: The coding sequence of mouse lactate dehydrogenase subunit C was amplified from mouse testis RNA with specific primers and cloned into pGEX-2T after restriction digestion with BamH I and EcoR I. GST fusion protein was expressed after induction with IPTG. Results: Sequencing and restriction digestion of the recombinant plasmid revealed the coding sequence for mouse lactate dehydrogenase subunit C. A protein band of about 60 000 could be induced by IPTG in the recombinant plasmid. Conclusion: The coding sequence of mouse lactate dehydrogenase subunit C was introduced into the pGEX-2T plasmid and a GST-fused protein could be induced at a high level.
文摘Mycorrhizal roots of the deciduous trees European beech (Fagus sylvatica (L.)) and Sessile oak (Quercus petraea (MattuschkaLiebl.)) and the conifers Norway spruce (Picea abies (L.) H. Karst.) and European larch (Larix decidua (Mill.)) associated with the ectomycorrhizal fungi matt bolete (Xerocomus pruinatus (Fries 1835)) or bay bolete (X. badius (Fries 1818)) were analysed with respect to the occurrence of dihydrolipoyl dehydrogenase (EC 1.8.1.4) allozymes. In root tissues of the two deciduous trees, two gene loci could be visualized after cellulose acetate electrophoresis while three loci were expressed in root tissues of the two coniferous species. The two fungal species and further ectomycorrhizal fungi expressed exclusively one dihydrolipoyl dehydrogenase gene. In Xerocomus pruinatus and X. badius, the dihydrolipoyl dehydrogenase gene consists of 1460 bp and 1370 bp, respectively, including five introns each consisting of 52 bp. Their DNA sequences correspond to 70 to 90% to other fungal dihydrolipoyl dehydrogenase genes. One monomer of the dimeric dihydrolipoyl dehydrogenase enzyme consists of 486 (X. pruinatus) or 454 (X. badius) amino acids which sum up to a molecular mass of 55 kDa (X. pruinatus), respectively 52 kDa (X. badius). The number of positively charged amino acid residues makes 79 (X. pruinatus) and 68 (X. badius) and the number of negatively charged amino acid residues was calculated to make 46 (X. pruinatus) and 48 (X. badius);isoelectric points make 9.99 (X. pruinatus) and 9.68 (X. badius). Calculated three dimensional structures reveal a short NADH binding site being part of a larger FAD-binding site and a binding/dimerization domain.