It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper pro...It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.展开更多
The concept of controllable mapping,which is a kind of Lipschitzian mapping,is induced.In certain case,any controllable mapping,on a closed convex subset of Banach space,has at least onefixed point,and its Mann iterat...The concept of controllable mapping,which is a kind of Lipschitzian mapping,is induced.In certain case,any controllable mapping,on a closed convex subset of Banach space,has at least onefixed point,and its Mann iterative sequence converges strongly to the fixed point.Moreover,theestimation between the iterative sequence and the fixed point is,in sulface,as the same as in Banachcontractive mapping.展开更多
This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann con...This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.展开更多
Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in th...Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results展开更多
The general results on convergence of the Ishikawa iteration procedures with errors for Lipschitzian φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type is established in arbit...The general results on convergence of the Ishikawa iteration procedures with errors for Lipschitzian φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type is established in arbitrary Banach spaces. As the direct applications, some stability results of the Ishikawa iteration methods for φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type are also given. Our results in this paper improve and extend the recent results due to Osilike and other authors.展开更多
In order to generate the three-dimensional (3-D) hull surface accurately and smoothly,a mixed method which is made up of non-uniform B-spline together with an iterative procedure was developed.By using the iterative m...In order to generate the three-dimensional (3-D) hull surface accurately and smoothly,a mixed method which is made up of non-uniform B-spline together with an iterative procedure was developed.By using the iterative method the data points on each section curve are calculated and the generalized waterlines and transverse section curves are determined.Then using the non-uniform B-spline expression,the control vertex net of the hull is calculated based on the generalized waterlines and section curves.A ship with tunnel stern was taken as test case.The numerical results prove that the proposed approach for geometry modeling of 3-D ship hull surface is accurate and effective.展开更多
A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress split...A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.展开更多
An iterative procedure is proposed to facilitate the determination of molecular vi-brational force constants from the experimental fundamental frequencies. Proper restrictions are introduced to the force constants bas...An iterative procedure is proposed to facilitate the determination of molecular vi-brational force constants from the experimental fundamental frequencies. Proper restrictions are introduced to the force constants based on physical considerations for getting reasonable results. The experimental data of Coriolis coupling coefficients and isotopic frequency shifts are utilized to reduce the uncertainty of the calculated force constants when they are available. A series of various kinds of molecules have been calculated by this method and the results are satisfactory.展开更多
基金Supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Ed-ucation Institutions of MOE,P.R.C.
文摘It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.
文摘The concept of controllable mapping,which is a kind of Lipschitzian mapping,is induced.In certain case,any controllable mapping,on a closed convex subset of Banach space,has at least onefixed point,and its Mann iterative sequence converges strongly to the fixed point.Moreover,theestimation between the iterative sequence and the fixed point is,in sulface,as the same as in Banachcontractive mapping.
文摘This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.
基金This project was supported both by the National Natural Science Foundation of China (1 980 1 0 2 3 ) andby the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institu-tions of MOEP.R.C.
文摘Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results
基金the National Natural Science Foundation of China ( Grant No.1 9971 0 1 3)
文摘The general results on convergence of the Ishikawa iteration procedures with errors for Lipschitzian φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type is established in arbitrary Banach spaces. As the direct applications, some stability results of the Ishikawa iteration methods for φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type are also given. Our results in this paper improve and extend the recent results due to Osilike and other authors.
基金The Special Research Fund for the Doctoral Program of Higher Education(No.20050248037)The National Natural Science Foundation of China(No.10572094)
文摘In order to generate the three-dimensional (3-D) hull surface accurately and smoothly,a mixed method which is made up of non-uniform B-spline together with an iterative procedure was developed.By using the iterative method the data points on each section curve are calculated and the generalized waterlines and transverse section curves are determined.Then using the non-uniform B-spline expression,the control vertex net of the hull is calculated based on the generalized waterlines and section curves.A ship with tunnel stern was taken as test case.The numerical results prove that the proposed approach for geometry modeling of 3-D ship hull surface is accurate and effective.
基金the National Natural Science Foundation of China (10672033,10590354,90715011 and 10272027)the National Key Basic Research and Development Program (2002CB412709)
文摘A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.
基金Project supported by the National Natural Science Foundation of China.
文摘An iterative procedure is proposed to facilitate the determination of molecular vi-brational force constants from the experimental fundamental frequencies. Proper restrictions are introduced to the force constants based on physical considerations for getting reasonable results. The experimental data of Coriolis coupling coefficients and isotopic frequency shifts are utilized to reduce the uncertainty of the calculated force constants when they are available. A series of various kinds of molecules have been calculated by this method and the results are satisfactory.