Consider a class of Ivlev's type predator-prey dynamic systems with prey and predator both having linear density restricts. By using the qualitative methods of ODE, the global stability of positive equilibrium and ex...Consider a class of Ivlev's type predator-prey dynamic systems with prey and predator both having linear density restricts. By using the qualitative methods of ODE, the global stability of positive equilibrium and existence and uniqueness of non-small amplitude stable limit cycle are obtained. Especially under certain conditions, it shows that existence and uniqueness of non-small amplitude stable limit cycle is equivalent to the local un-stability of positive equilibrium and the local stability of positive equilibrium implies its global stability. That is to say, the global dynamic of the system is entirely determined by the local stability of the positive equilibrium.展开更多
A mathematical model of a predator-prey model with Ivlev’s functional response concerning integrated pest management (IPM) is proposed and analyzed. We show that there exists a stable pest-eradication periodic soluti...A mathematical model of a predator-prey model with Ivlev’s functional response concerning integrated pest management (IPM) is proposed and analyzed. We show that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical values. Further more, the conditions for the permanence of the system are given. By using bifurcation theory, we show the existence and stability of a positive periodic solution. These results are quite different from those of the corresponding system without impulses. Numerical simulation shows that the system we consider has more complex dynamical behaviors. Finally, it is proved that IPM stragey is more effective than the classical one.展开更多
文摘Consider a class of Ivlev's type predator-prey dynamic systems with prey and predator both having linear density restricts. By using the qualitative methods of ODE, the global stability of positive equilibrium and existence and uniqueness of non-small amplitude stable limit cycle are obtained. Especially under certain conditions, it shows that existence and uniqueness of non-small amplitude stable limit cycle is equivalent to the local un-stability of positive equilibrium and the local stability of positive equilibrium implies its global stability. That is to say, the global dynamic of the system is entirely determined by the local stability of the positive equilibrium.
基金Supported by National Natural Science Foundation of China (No.10171106)
文摘A mathematical model of a predator-prey model with Ivlev’s functional response concerning integrated pest management (IPM) is proposed and analyzed. We show that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical values. Further more, the conditions for the permanence of the system are given. By using bifurcation theory, we show the existence and stability of a positive periodic solution. These results are quite different from those of the corresponding system without impulses. Numerical simulation shows that the system we consider has more complex dynamical behaviors. Finally, it is proved that IPM stragey is more effective than the classical one.