Nano-mechanical mapping by atomic force microscopy has been developed as an useful application to measure mechanical properties of soft materials at nanometer scale.To date,the Hertzian theory was used for analyzing f...Nano-mechanical mapping by atomic force microscopy has been developed as an useful application to measure mechanical properties of soft materials at nanometer scale.To date,the Hertzian theory was used for analyzing force- distance curves as the simplest model among several contact mechanics between elastic bodies.However,the preexisting methods based on this theory do not consider the adhesive interaction in principle,which cannot be neglected in the ambient condition.A new analytical method was introduced...展开更多
This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solid...This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solids 76, 144-161, 2015). The focus of this work is on adhesion. We show that a collection of a large number of discrete elements governed by a threshold-force based model at the microscopic scale collectively gives rise to continuum fracture mechanics at the macroscopic scale. A key step is the introduction of an efficient numerical method that enables the computation of a large number of discrete contacts. Finally, while this work focuses on scaling laws, the methodology introduced in this paper can also be used to study rough-surface adhesion.展开更多
基金the financial support from National Institute of Advanced Industrial Science and Technology (AIST),Japan Chemical Innovation Institute (JCII) and New Energy Development Organization (NEDO) as one of the projects in the Nanotechnology Program by the Ministry of Economy,Trade,and Industry (METI) of Japan.
文摘Nano-mechanical mapping by atomic force microscopy has been developed as an useful application to measure mechanical properties of soft materials at nanometer scale.To date,the Hertzian theory was used for analyzing force- distance curves as the simplest model among several contact mechanics between elastic bodies.However,the preexisting methods based on this theory do not consider the adhesive interaction in principle,which cannot be neglected in the ambient condition.A new analytical method was introduced...
基金support for this study from the National Science Foundation of the United States (Grant EAR 1142183)the Terrestrial Hazards Observations and Reporting Center (THOR) at the California Institute of Technology
文摘This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solids 76, 144-161, 2015). The focus of this work is on adhesion. We show that a collection of a large number of discrete elements governed by a threshold-force based model at the microscopic scale collectively gives rise to continuum fracture mechanics at the macroscopic scale. A key step is the introduction of an efficient numerical method that enables the computation of a large number of discrete contacts. Finally, while this work focuses on scaling laws, the methodology introduced in this paper can also be used to study rough-surface adhesion.