期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
悬停旋翼无粘流场数值模拟中的多重网格方法 被引量:4
1
作者 杨小权 杨爱明 翁培奋 《空气动力学学报》 EI CSCD 北大核心 2009年第5期608-615,共8页
发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场... 发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场的多重网格算法具有重要意义。空间离散采用了Roe s FDS格式和Jameson中心有限体积格式,时间推进应用了五步Runge-Kutta方法。采用多重网格V循环方式,对一跨声速悬停旋翼无粘流场进行了数值计算。计算结果表明:多重网格算法可以显著加速悬停旋翼无粘流场的数值计算收敛速度;无论在激波分辨率还是在计算精度上,Roe s FDS格式都优于JST格式。 展开更多
关键词 悬停旋翼 Roe格式 jst格式 多重网格 EULER方程
下载PDF
Improving Solution of Euler Equations by a Gas-Kinetic BGK Method
2
作者 Liu, Ya Gao, Chao Liu, F. 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第1期1-5,共5页
Aim.The well known JST(Jameson-Schmidt-Turkel) scheme requires the use of a dissipation term.We propose using gas-kinetic BGK(Bhatnagar-Gross-Krook) method,which is based on the more fundamental Boltzmann equation,in ... Aim.The well known JST(Jameson-Schmidt-Turkel) scheme requires the use of a dissipation term.We propose using gas-kinetic BGK(Bhatnagar-Gross-Krook) method,which is based on the more fundamental Boltzmann equation,in order to obviate the use of dissipation term and obtain,we believe,an improved solution.Section 1 deals essentially with three things:(1) as analytical solution of molecular probability density function at the cell interface has been obtained by the Boltzmann equation with BGK model,we can compute the flux term by integrating the density function in the phase space;eqs.(8) and(11) require careful attention;(2) the integrations can be expressed as the moments of Maxwellian distribution with different limits according to the analytical solution;eqs.(9) and(10) require careful attention;(3) the discrete equation by finite volume method can be solved using the time marching method.Computations are performed by the BGK method for the Sod′s shock tube problem and a two-dimensional shock reflection problem.The results are compared with those of the conventional JST scheme in Figs.1 and 2.The BGK method provides better resolution of shock waves and other features of the flow fields. 展开更多
关键词 Euler equations Boltzmann equation gas-kinetic BGK(Bhatnagar-Gross-Krook) scheme jst(jameson-schmidt-turkel) scheme shock tube shock reflection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部