发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场...发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场的多重网格算法具有重要意义。空间离散采用了Roe s FDS格式和Jameson中心有限体积格式,时间推进应用了五步Runge-Kutta方法。采用多重网格V循环方式,对一跨声速悬停旋翼无粘流场进行了数值计算。计算结果表明:多重网格算法可以显著加速悬停旋翼无粘流场的数值计算收敛速度;无论在激波分辨率还是在计算精度上,Roe s FDS格式都优于JST格式。展开更多
Aim.The well known JST(Jameson-Schmidt-Turkel) scheme requires the use of a dissipation term.We propose using gas-kinetic BGK(Bhatnagar-Gross-Krook) method,which is based on the more fundamental Boltzmann equation,in ...Aim.The well known JST(Jameson-Schmidt-Turkel) scheme requires the use of a dissipation term.We propose using gas-kinetic BGK(Bhatnagar-Gross-Krook) method,which is based on the more fundamental Boltzmann equation,in order to obviate the use of dissipation term and obtain,we believe,an improved solution.Section 1 deals essentially with three things:(1) as analytical solution of molecular probability density function at the cell interface has been obtained by the Boltzmann equation with BGK model,we can compute the flux term by integrating the density function in the phase space;eqs.(8) and(11) require careful attention;(2) the integrations can be expressed as the moments of Maxwellian distribution with different limits according to the analytical solution;eqs.(9) and(10) require careful attention;(3) the discrete equation by finite volume method can be solved using the time marching method.Computations are performed by the BGK method for the Sod′s shock tube problem and a two-dimensional shock reflection problem.The results are compared with those of the conventional JST scheme in Figs.1 and 2.The BGK method provides better resolution of shock waves and other features of the flow fields.展开更多
文摘发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场的多重网格算法具有重要意义。空间离散采用了Roe s FDS格式和Jameson中心有限体积格式,时间推进应用了五步Runge-Kutta方法。采用多重网格V循环方式,对一跨声速悬停旋翼无粘流场进行了数值计算。计算结果表明:多重网格算法可以显著加速悬停旋翼无粘流场的数值计算收敛速度;无论在激波分辨率还是在计算精度上,Roe s FDS格式都优于JST格式。
文摘Aim.The well known JST(Jameson-Schmidt-Turkel) scheme requires the use of a dissipation term.We propose using gas-kinetic BGK(Bhatnagar-Gross-Krook) method,which is based on the more fundamental Boltzmann equation,in order to obviate the use of dissipation term and obtain,we believe,an improved solution.Section 1 deals essentially with three things:(1) as analytical solution of molecular probability density function at the cell interface has been obtained by the Boltzmann equation with BGK model,we can compute the flux term by integrating the density function in the phase space;eqs.(8) and(11) require careful attention;(2) the integrations can be expressed as the moments of Maxwellian distribution with different limits according to the analytical solution;eqs.(9) and(10) require careful attention;(3) the discrete equation by finite volume method can be solved using the time marching method.Computations are performed by the BGK method for the Sod′s shock tube problem and a two-dimensional shock reflection problem.The results are compared with those of the conventional JST scheme in Figs.1 and 2.The BGK method provides better resolution of shock waves and other features of the flow fields.