期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research Progress on MEF2B Gene in Human and Animals
1
作者 马晓萌 张莉 杜立新 《Agricultural Science & Technology》 CAS 2016年第11期2477-2482,共6页
Myocyte enhancer factor 2B (MEF2B) gene belongs to myocyte enhancer factor 2 (MEF2) gene family. They are all widely expressed in muscle and nerve tissues of human and animals. MEF2B plays an important role in the... Myocyte enhancer factor 2B (MEF2B) gene belongs to myocyte enhancer factor 2 (MEF2) gene family. They are all widely expressed in muscle and nerve tissues of human and animals. MEF2B plays an important role in the growth of muscle, development and differentiation of nerve system and liver fibrosis. This re- view mainly focused on the structural characteristics, tissue distribution, biological functions and research progress of MEF2B gene in human and animals. 展开更多
关键词 Myocyte enhancer factor 2B (MEF2B) Biological functions Tissue dis- tribution Research progress
下载PDF
基于JSU分布的广义自回归条件密度建模及应用 被引量:5
2
作者 蒋翠侠 《数量经济技术经济研究》 CSSCI 北大核心 2008年第8期137-150,共14页
金融时间序列的分布对于全面、准确把握金融资产收益的动态行为具有重要的意义,而广义自回归条件密度(GARCD)建模为描述金融资产收益的概率密度函数提供了一种工具。本文在JSU分布的基础上,建立了GARCD-JSU模型,给出了模型的参数估计方... 金融时间序列的分布对于全面、准确把握金融资产收益的动态行为具有重要的意义,而广义自回归条件密度(GARCD)建模为描述金融资产收益的概率密度函数提供了一种工具。本文在JSU分布的基础上,建立了GARCD-JSU模型,给出了模型的参数估计方法及模型拟合效果的检验方法。利用建立的GARCD-JSU模型不仅可以得到金融时间序列的时变概率密度函数,而且还可以测算出时变高阶矩的变化,从而克服了正态分布假定框架下仅从前二阶矩出发考虑金融时间序列分布特征的局限性。 展开更多
关键词 广义自回归条件密度模型 jsu分布 极大似然估计 建模
原文传递
A priori error estimates of finite volume element method for hyperbolic optimal control problems 被引量:5
3
作者 LUO XianBing CHEN YanPing HUANG YunQing 《Science China Mathematics》 SCIE 2013年第5期901-914,共14页
In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discre... In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results. 展开更多
关键词 second order hyperbolic equation optimal control problems finite volume element method dis- tributed control variational discretization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部