For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functio...For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functions of the solution and use them to give an expression of the matrix resolvent;based on this we obtain a new formula for the k-point functions for the Volterra lattice hierarchy in terms of wave functions.As an application,we give an explicit formula of k-point functions for the even GUE(Gaussian Unitary Ensemble)correlators.展开更多
Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagati...Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials.展开更多
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j...Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.展开更多
The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave ...Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (Vs) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensi- tivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and Vp/Vs ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the Vs model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute vs model and then incorporate receiver function data in the joint inver- sion to obtain a finer Vs model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal Vs structures and with little initial model dependency.展开更多
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater...In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.展开更多
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary ex...In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.展开更多
In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simu...In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simulations were given.展开更多
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> do...A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.展开更多
The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric a...The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric and parametric methods. The marginal wave characteristic distribution and the joint density of wave properties have been calculated using the two transformations, with the results and accuracy of both transformations presented here. The two transformations deviate slightly between each other for the calculation of the crest and trough height marginal wave distributions, as well as the joint densities of wave amplitude with other wave properties. The transformation methods for the calculation of the wave crest and trough height distributions are shown to provide good agreement with real ocean data. Our work will help in the determination of the most appropriate transformation procedure for the prediction of extreme values.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
To solve the problem in dispute about a Schrdinger equation with time-depenelent mass and frequency, by means of a simple transformation of variables, the time-dependent Schrdinger equation is transformed into the tim...To solve the problem in dispute about a Schrdinger equation with time-depenelent mass and frequency, by means of a simple transformation of variables, the time-dependent Schrdinger equation is transformed into the time-independent one first and then an exact wave function can be found.展开更多
Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics,...Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.展开更多
The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the F...The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.展开更多
The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first tr...The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first transformed into the time independent one. And then exact wave function is found in terms of solutions of the classical equation of motion of the oscillator.展开更多
Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased ar...A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.展开更多
基金supported by the National Key R and D Program of China(2020YFA0713100).
文摘For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functions of the solution and use them to give an expression of the matrix resolvent;based on this we obtain a new formula for the k-point functions for the Volterra lattice hierarchy in terms of wave functions.As an application,we give an explicit formula of k-point functions for the even GUE(Gaussian Unitary Ensemble)correlators.
文摘Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials.
基金supported by the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0306)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32)the National Natural Science Foundation of China(No.42174069).
文摘Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
基金supported by the National Earthquake Science Experiment in Sichuan and Yunnan Provinces of China(#2016 CESE 0201)National Natural Science Foundation of China(#41574034)China National Special Fund for Earthquake Scientific Research in Public Interest(#201508008)
文摘Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (Vs) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensi- tivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and Vp/Vs ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the Vs model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute vs model and then incorporate receiver function data in the joint inver- sion to obtain a finer Vs model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal Vs structures and with little initial model dependency.
基金The project supported by the National Natural Science Foundation of China(90405016,10572044)the Specialized Research Fund for the Doctoral Program of Higher Education(20040213034)
文摘In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.
基金Project supported by the National Natural Science Foundation of China (Nos.90405016 and 10572044)the Special Research Fund for the Doctoral Program of Higher Education (No.2004021334)
文摘In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.
基金Project supported by National Natural Science Foundation of China(Grant No .10271072)
文摘In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simulations were given.
文摘A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.
基金Supported by the Marine Engineering Equipment Scientific Research Project of Ministry of Industry and Information Technology of PRCthe National Science and Technology Major Project of China(Grant No.2016ZX05057020)National Natural Science Foundation of China(Grant No.51809067)
文摘The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric and parametric methods. The marginal wave characteristic distribution and the joint density of wave properties have been calculated using the two transformations, with the results and accuracy of both transformations presented here. The two transformations deviate slightly between each other for the calculation of the crest and trough height marginal wave distributions, as well as the joint densities of wave amplitude with other wave properties. The transformation methods for the calculation of the wave crest and trough height distributions are shown to provide good agreement with real ocean data. Our work will help in the determination of the most appropriate transformation procedure for the prediction of extreme values.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
文摘To solve the problem in dispute about a Schrdinger equation with time-depenelent mass and frequency, by means of a simple transformation of variables, the time-dependent Schrdinger equation is transformed into the time-independent one first and then an exact wave function can be found.
基金Project supported by the National Natural Science Foundation of China(Nos.51478435,11402150,and 11172268)
文摘Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars (No. 10325208),the National Natural Science Foundation of China (No.10430230)the China Postdoctral Science Foundation (No.2005037640).
文摘The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.
基金National Natural Science Foundation (K19972 0 11)
文摘The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first transformed into the time independent one. And then exact wave function is found in terms of solutions of the classical equation of motion of the oscillator.
基金The project supported by the National Outstanding Youth Foundation of China (No.19925522)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant.No.2000024832)National Natural Science Foundation of China (No.90203001)
文摘Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674214 and 11874255)
文摘A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.