In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:"">...In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different </span><span style="font-size:10.0pt;font-family:"">coefficient</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10pt;font-family:""> <i>p</i>, <i>q</i> and <i>r</i> in the</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">elliptic equation. Then these solutions are</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">coupled into an auxiliary equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">and substituted into the (2+1)-dimensional KDV equation. As <span>a result,</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">a large number of complex Jacobi elliptic function solutions are ob</span><span style="font-size:10pt;font-family:"">tained, and many of them have not been found in other documents. As</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10.0pt;font-family:""><span></span></span><span style="font-size:10pt;font-family:"">, some complex solitary solutions are also obtained correspondingly.</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation.展开更多
文摘In this paper, we investigate the periodic wave solutions and solitary wave solutions of a (2+1)-dimensional Korteweg-de Vries (KDV) equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">by applying Jacobi elliptic function expansion method. Abundant types of Jacobi elliptic function solutions are obtained by choosing different </span><span style="font-size:10.0pt;font-family:"">coefficient</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10pt;font-family:""> <i>p</i>, <i>q</i> and <i>r</i> in the</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">elliptic equation. Then these solutions are</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">coupled into an auxiliary equation</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">and substituted into the (2+1)-dimensional KDV equation. As <span>a result,</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">a large number of complex Jacobi elliptic function solutions are ob</span><span style="font-size:10pt;font-family:"">tained, and many of them have not been found in other documents. As</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10.0pt;font-family:""><span></span></span><span style="font-size:10pt;font-family:"">, some complex solitary solutions are also obtained correspondingly.</span><span style="font-size:10pt;font-family:""> </span><span style="font-size:10pt;font-family:"">These solutions that we obtained in this paper will be helpful to understand the physics of the (2+1)-dimensional KDV equation.