In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as ...In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as well. The best constant factor is calculated by the way of Complex Analysis.展开更多
In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality...Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality and its reverse using a simple analytical technique of algebra and calculus. Our results show many results related to holder’s inequality as special cases of the inequalities presented.展开更多
In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which gi...In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which give Hardy's inequalities as spacial cases.展开更多
In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function...In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function in second sense is introduced and then a new Herrnite-Hadarnard inequality is derived for the class of logarithmically s-Godunova-Levin-preinvex function.展开更多
The main purpose of this survey paper is to point out some very recent developments on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept of strongly extended s-convex function is intr...The main purpose of this survey paper is to point out some very recent developments on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept of strongly extended s-convex function is introduced. Next a new identity is also established. Finally, by this identity and H?lder’s inequality, some new Simpson type for the product of strongly extended s-convex function are obtained.展开更多
In this paper we show that a log-convex function satisfies Hadamard's inequality, as well as we give an extension for this result in several directions.
Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a ne...Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a new upper bound is given. Under special conditions,the bound is smaller than that in [3].展开更多
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
文摘In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as well. The best constant factor is calculated by the way of Complex Analysis.
文摘In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
文摘Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality and its reverse using a simple analytical technique of algebra and calculus. Our results show many results related to holder’s inequality as special cases of the inequalities presented.
文摘In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
文摘In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which give Hardy's inequalities as spacial cases.
基金The Key Scientific and Technological Innovation Team Project(2014KCT-15)in Shaanxi Province
文摘In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function in second sense is introduced and then a new Herrnite-Hadarnard inequality is derived for the class of logarithmically s-Godunova-Levin-preinvex function.
文摘The main purpose of this survey paper is to point out some very recent developments on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept of strongly extended s-convex function is introduced. Next a new identity is also established. Finally, by this identity and H?lder’s inequality, some new Simpson type for the product of strongly extended s-convex function are obtained.
文摘In this paper we show that a log-convex function satisfies Hadamard's inequality, as well as we give an extension for this result in several directions.
基金Supported by the Key Scientific and Technological Innovation Team Project in Shaanxi Province(2014KCT-15)
文摘Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a new upper bound is given. Under special conditions,the bound is smaller than that in [3].