期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RIGHT MEAN FOR THEα-z BURES-WASSERSTEIN QUANTUM DIVERGENCE
1
作者 Miran JEONG Jinmi HWANG Sejong KIM 《Acta Mathematica Scientia》 SCIE CSCD 2023年第5期2320-2332,共13页
The optimization problem to minimize the weighted sum ofα-z Bures-Wasserstein quantum divergences to given positive definite Hermitian matrices has been solved.We call the unique minimizer theα-z weighted right mean... The optimization problem to minimize the weighted sum ofα-z Bures-Wasserstein quantum divergences to given positive definite Hermitian matrices has been solved.We call the unique minimizer theα-z weighted right mean,which provides a new non-commutative version of generalized mean(H?lder mean).We investigate its fundamental properties,and give many interesting operator inequalities with the matrix power mean including the Cartan mean.Moreover,we verify the trace inequality with the Wasserstein mean and provide bounds for the Hadamard product of two right means. 展开更多
关键词 Rényi relative entropy Bures-Wasserstein quantum divergence right mean power mean Cartan mean Wasserstein mean
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部