A closed-loop experimental system is established to investigate the heat transfer characteristics of microcapsule phase change material(MEPCM) suspension in an array jet impingement. Eicosane with a melting peak at 4...A closed-loop experimental system is established to investigate the heat transfer characteristics of microcapsule phase change material(MEPCM) suspension in an array jet impingement. Eicosane with a melting peak at 40.8℃ is used as the capsule core of the MEPCM particle. Five kinds of array-hole nozzles with the same hole cross-sectional area are employed to analyze the influence of critical parameters, including the nozzle hole number, hole spacing, impinging distance, and jet temperature. It shows that a 5% suspension may improve the heat transfer coefficient of the array jet by up to 23.5% compared with water. The heat transfer of an array jet is obviously stronger than that of a single jet, but too much hole number is not conducive because of the entrainment interference between adjacent jets. A larger hole spacing or smaller impinging distance may weaken the crossflow accumulation on the impinged surface, thus enhancing the heat transfer capability. The heat transfer coefficient of the array jet presents a secondary peak value at the end of the jet-core region. The latent heat absorption of the capsule core results in superior heat transfer of the suspension compared to that of water only in a specific range of jet temperatures, the optimum of which is approximately 10℃ lower relative to the peak melting temperature. In addition, the melt completion time of a single MEPCM particle and the critical flow rate of the suspension are predicted theoretically.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51706150)National Key R&D Program of China(Grant No. 2020YFB0606302)。
文摘A closed-loop experimental system is established to investigate the heat transfer characteristics of microcapsule phase change material(MEPCM) suspension in an array jet impingement. Eicosane with a melting peak at 40.8℃ is used as the capsule core of the MEPCM particle. Five kinds of array-hole nozzles with the same hole cross-sectional area are employed to analyze the influence of critical parameters, including the nozzle hole number, hole spacing, impinging distance, and jet temperature. It shows that a 5% suspension may improve the heat transfer coefficient of the array jet by up to 23.5% compared with water. The heat transfer of an array jet is obviously stronger than that of a single jet, but too much hole number is not conducive because of the entrainment interference between adjacent jets. A larger hole spacing or smaller impinging distance may weaken the crossflow accumulation on the impinged surface, thus enhancing the heat transfer capability. The heat transfer coefficient of the array jet presents a secondary peak value at the end of the jet-core region. The latent heat absorption of the capsule core results in superior heat transfer of the suspension compared to that of water only in a specific range of jet temperatures, the optimum of which is approximately 10℃ lower relative to the peak melting temperature. In addition, the melt completion time of a single MEPCM particle and the critical flow rate of the suspension are predicted theoretically.