Catalytic hydrodeoxygenation(HDO)of biomass-derived oxy-compounds to advanced hydrocarbon fuels usually requires bifunctional catalysts containing metals and acidic sites.The appropriate tuning of metal and/or acidic ...Catalytic hydrodeoxygenation(HDO)of biomass-derived oxy-compounds to advanced hydrocarbon fuels usually requires bifunctional catalysts containing metals and acidic sites.The appropriate tuning of metal and/or acidic active sites at interfaces of bifunctional catalysts can significantly improve catalyst activity and product selectivity.Here,4-trifuoromethyl salicylic acid(TFMSA),as a hydrothermal stable organic acid,was employed to tailor the bifunctional interface of Ru/γ-Al_(2)O_(3)to enhance the catalytic performance on converting lignin-derived phenols to jet fuel range cycloalkanes.More than 80%phenol was converted into cyclohexane at 230°C for 1 h over Ru/γ-Al_(2)O_(3)modified by TFMSA,which was about three times higher than that over unmodified Ru/γ-Al_(2)O_(3).X-ray diffraction(XRD),Transmission electron microscope(TEM),H2 chemisorption,and energy dispersive X-ray spectroscopy(EDS)elemental mapping results indicated that Ru nanoparticles and TFMSA were well distributed onγ-Al_(2)O_(3),and a nanoscale intimacy between Ru and TFMSA was reached.Meanwhile,Fourier transform infrared spectroscopy after pyridine adsorption(Py-FT-IR)analysis proved that Brønsted acidic sites on the catalytic interfaces of TFMSA modified Ru/γ-Al_(2)O_(3)had been improved.Moreover,the kinetic and density functional theory(DFT)results suggested that the synergistic effects of adjacent Ru nanoparticles and acidic sites were crutial for promoting the rate-limiting conversion step of phenol HDO to cyclohexane.展开更多
A new route was developed for the synthesis of renewable decalin with cyclopentanone which can be derived from lignocellulose.It was found that 1,2,3,4,5,6,7,8-octahydronaphthalene could be selectively produced by the...A new route was developed for the synthesis of renewable decalin with cyclopentanone which can be derived from lignocellulose.It was found that 1,2,3,4,5,6,7,8-octahydronaphthalene could be selectively produced by the hydrogenation/dehydration/rearrangement of [1,1-bi(cyclopentylidene)]-2-one(i.e.the selfaldol condensation product of cyclopentanone) over a dual-bed catalyst system.Among the investigated catalysts,the Ru/C and Amberlyst-15 resin exhibited the highest activities for the hydrogenation of [1,1-bi(cyclopentylidene)]-2-one to [1,1-bi(cyclopentan)]-2-ol and the dehydration/rearrangement of [1,1-bi(cyclopentan)]-2-ol to 1,2,3,4,5,6,7,8-octahydronaphthalene,respectively.Using Ru/C and Amberlyst-15 resin as the first bed and the second bed catalysts,1,2,3,4,5,6,7,8-octahydronaphthalene was directly produced in high carbon yield(83.7%) under mild conditions(393 K,1 MPa).After being hydrogenated,the1,2,3,4,5,6,7,8-octahydronaphthalene was converted to decalin which can be used as additive to improve the thermal stability and volumetric heat value of jet fuel.展开更多
Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, t...Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs.展开更多
As a promising cancer treatment method,cold atmospheric plasma has received widespread attention in recent years.However,previous research has focused more on how to realize and expand the anti-cancer scope of plasma ...As a promising cancer treatment method,cold atmospheric plasma has received widespread attention in recent years.However,previous research has focused more on how to realize and expand the anti-cancer scope of plasma jet.There are also studies on the killing of small-scale cancer cells,but the effects of plasma jet on normal cells and normal cell clusters have been ignored.Therefore,we proposed a 50μm sized micro-plasma jet device,and used the device to treat melanoma cells(A-375)and human glial cells(HA1800)to evaluate their anti-cancer effects and effects on normal cells.The experimental results show that this kind of micro-plasma jet device can effectively inactivate cancer cells in a short period of time,while having little effect on normal cells.This work provides a certain experimental basis for the application offine plasma jet to clinically inactivate cancer cells.展开更多
3D printing is a promising technology used in the fabrication of complex oral dosage delivery pharmaceuticals.This study first reports an innovative color jet 3D printing(CJ-3DP)technology to produce colorful cartoon ...3D printing is a promising technology used in the fabrication of complex oral dosage delivery pharmaceuticals.This study first reports an innovative color jet 3D printing(CJ-3DP)technology to produce colorful cartoon levetiracetam pediatric preparations with high accuracy and reproducibility.For this study,the ideal printing ink consisted of 40%(v/v)isopropanol aqueous solution containing 0.05%(w/w)polyvinylpyrrolidone and 4%(w/w)glycerin,which was satisfied with scale-up of the production.The external and internal spatial structures of the tablets were designed to control the appearance and release,and cartoon tablets with admirable appearances and immediate release characteristics were printed.The dosage model showed a good linear relationship between the model volume and the tablet strength(r>0.999),which proved the potential of personalized administration.The surface roughness indicated that the appearance of the CJ-3DP tablets was significantly better than the first listed 3D printed drug(Spritam R).Moreover,the scanning electron microscopy and porosity results further showed that the tablets have a structure of loose interior and tight exterior,which could ensure good mechanical properties and rapid dispersion characteristics simultaneously.In conclusion,the innovative CJ-3DP technology can be used to fabricate personalized pediatric preparations for improved compliance.Due to the stable formulation and fabrication process,this technology has the potential in scale-up production.展开更多
LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infil...LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infiltration from LNF porous backbones. Electrochemical properties and Cr-poisoning behavior of LNF-GDC cathodes were studied. Single phase perovskite LNF could be obtained at the glycine to nitrate molar ratio of 1:1. The polarization resistance of the LNF-GDC nanocomposite cathode was significantly decreased in comparison with the LNF. This phenomenon was associated with enhanced catalytic activity and enlarged triple-phase boundary (TPB) length by GDC nano particles. In addition, the nanocomposite cathode showed good Cr tolerance under open circuit condition. The LNF-GDC nanocomposite cathodes were expected for use as a potential cathode in intermediate- temperature solid oxide fuel cells (IT-SOFC).展开更多
SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers ...SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.展开更多
RP-3 jet fuel could be an alternative fuel for diesel engines.In this study,the injection characteristics of RP-3jet fuel under single and split injection strategies were investigated and compared with diesel fuel.The...RP-3 jet fuel could be an alternative fuel for diesel engines.In this study,the injection characteristics of RP-3jet fuel under single and split injection strategies were investigated and compared with diesel fuel.The experimental results indicate that RP-3 jet fuel has slightly shorter injection delay time than diesel fuel,but this difference is negligible in actual engine operations.Further,although the lower density and viscosity of RP-3 jet fuel lead to higher volumetric injection rates and cycle-based injection quantities,the cycle-based injection mass and the mass injection rates at the stable injection stage of RP-3 jet fuel are close to or slightly lower than those of diesel fuel.Based on these experimental observations,it could be concluded that fuel physical properties are the secondary factor influencing the injection characteristics in both single and split injection strategies,as RP-3 jet fuel and diesel fuel are taken for comparison.展开更多
In this work,a“cyclopentanone-vanillin”strategy was proposed for the preparation of jet fuel range cycloalkanes from lignocellulose-derived ketones and lignin-derived aldehydes via aldol condensation and hydrodeoxyg...In this work,a“cyclopentanone-vanillin”strategy was proposed for the preparation of jet fuel range cycloalkanes from lignocellulose-derived ketones and lignin-derived aldehydes via aldol condensation and hydrodeoxygenation(HDO).Ethanolamine lactate ionic liquid(LAIL)exhibited excellent catalytic activity in the aldol condensation of cyclopentanone and vanillin.Desired mono-condensation and bicondensation products were obtained with yield of 95.2%at 100℃.It is found that the synergy effects between amino group of ethanolamine and hydroxyl group of lactic acid play a key role in the aldol condensation.The condensation products were converted into cycloalkanes by HDO over 5%Pd/Nb_(2)O_(5)catalyst.The density of the obtained HDO products is 0.89 g/cm^(3)and the freezing point is lower than-60℃.These results suggest that the resulted cycloalkanes can be used as additives to improve the density and low-temperature fluidity of the jet fuels.展开更多
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for...Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs.展开更多
To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and to support the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, environ...To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and to support the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, environment, energy) was applied to the three biomass ethanol fuel cycle alternatives, which includes cassava-based, corn-based and wheat-based ethanol fuel. The assessments provide a comparison of the economical performance, energy efficiency and environmental impacts of the three alternatives. And the development potential of the three alternatives in China was examined. The results are very useful for the Chinese government to make decisions on the biomass ethanol energy policy, and some advises for the decision-making of Chinese government were given.展开更多
This work investigated multiple jet nozzles with various geometrical shape,number of exits,and material on reducing noise radiated from jet flows.Nozzles are categorized in two groups with few and many exit numbers,ea...This work investigated multiple jet nozzles with various geometrical shape,number of exits,and material on reducing noise radiated from jet flows.Nozzles are categorized in two groups with few and many exit numbers,each with various exit shapes,slot and circular,and geometry.Firstly,nozzles are designed and then fabricated by a 3D printer,Form Labs,Form2USA,with polymeric resin.Also,the nozzle with the most noise reduction made of stainless steel.Noise and air thrust were measured at three air pressure gauges,3,5,7 BAR and directions from nozzle apex,30°,90°,135°.Nozzles with slot exit shape made of both plastic and stainless steel revealed the most noise reduction among all nozzles with few exit numbers,nearly 11–14 dB(A)and 11.5–15 dB(A),respectively.On average,slotted nozzle noise reduction was nearly 5–6 dB(A)more than finned nozzle.However,nozzles with more exit numbers,finned and finned-central exit,illustrated much more noise reduction than nozzles with few exit numbers,by almost 16–18 dB(A),they represented similar sound.All tested nozzles and open pipe demonstrated equal air thrust at each pressure gauges.The nozzles with slotted exit shape,either plastic or stainless steel,can provide reasonable noise reduction in comparison to other configuration with few exit numbers.In contrast,nozzles with more exit numbers demonstrated the most noise reduction.展开更多
Oxygen reduction reaction(ORR)is of significance for energy conversion technologies such as fuel cells and metal-air batteries[1,2].Currently,the electrocatalysts still need to employ expensive precious metal platinum...Oxygen reduction reaction(ORR)is of significance for energy conversion technologies such as fuel cells and metal-air batteries[1,2].Currently,the electrocatalysts still need to employ expensive precious metal platinum(Pt)as the main active component to overcome the sluggish kinetics of ORR[3,4].The exploration of low-cost.展开更多
Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon fel...Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon felt using chemical method and a composite modified anode was prepared through organic ligands coordination Fe^(3+)for better electro-chemical per-formance.Results show that the biofilm resistance of the composite modified anode(2707Ω)is 1.3 times greater than that of the unmodified anode(2100Ω),and its biofilm capacitance also increases by 2.2 times,indicating that the composite modification pro-motes the growth and attachment of electroactive bacteria on the anode.Its specific capacitance(887.8 Fm^(−2))is 3.7 times higher than that of unmodified anode,generating a maximum current density of 1.5Am^(−2).In their Tafel curves,the composite modified anodic exchange current density(5.25×10^(−6)Acm^(−2))is 5.8 times bigger than that of unmodified anode,which suggests that the electro-chemical activity of redox,anti-polarization ability and electron transfer kinetic activity are significantly enhanced.The marine sediment microbial fuel cell with the composite modified anode generates the higher power densities than the blank(203.8mWm^(−2) versus 45.07mWm^(−2)),and its current also increases by 4.4 times.The free amino groups on the anode surface expands a creative idea that the modified anode ligates the natural Fe(Ⅲ)ion in sea water in the MSMFCs for its higher power output.展开更多
The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (C...The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.展开更多
The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sa...The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmospheres in the temperature range of 500-900 ℃. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 ℃, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 ℃. In wet air, the sample is a mixed conductor of proton, oxide ion, and electronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942 0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 ℃, the maximum power output density is 110,2 mW/cm2, which is higher than that of our previous cell using Ba0.98Ce0.8Tm0.2O3-α (x〈≤1, RE=Y, Eu, Ho) as solid electrolyte.展开更多
The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel ce...The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.展开更多
基金supported by the National Key R&D Program of China(2018YFB1501500)the 2115 Talent Development Program of China Agricultural University+3 种基金the National Natural Science Foundation of China(21903001)the Natural Science Foundation of Anhui Province(1908085QB58)the Chinese Universities Scientific Fund(2020TC116)the Research Innovation Fund for Graduate Students of CAU(2020XYZC05A)。
文摘Catalytic hydrodeoxygenation(HDO)of biomass-derived oxy-compounds to advanced hydrocarbon fuels usually requires bifunctional catalysts containing metals and acidic sites.The appropriate tuning of metal and/or acidic active sites at interfaces of bifunctional catalysts can significantly improve catalyst activity and product selectivity.Here,4-trifuoromethyl salicylic acid(TFMSA),as a hydrothermal stable organic acid,was employed to tailor the bifunctional interface of Ru/γ-Al_(2)O_(3)to enhance the catalytic performance on converting lignin-derived phenols to jet fuel range cycloalkanes.More than 80%phenol was converted into cyclohexane at 230°C for 1 h over Ru/γ-Al_(2)O_(3)modified by TFMSA,which was about three times higher than that over unmodified Ru/γ-Al_(2)O_(3).X-ray diffraction(XRD),Transmission electron microscope(TEM),H2 chemisorption,and energy dispersive X-ray spectroscopy(EDS)elemental mapping results indicated that Ru nanoparticles and TFMSA were well distributed onγ-Al_(2)O_(3),and a nanoscale intimacy between Ru and TFMSA was reached.Meanwhile,Fourier transform infrared spectroscopy after pyridine adsorption(Py-FT-IR)analysis proved that Brønsted acidic sites on the catalytic interfaces of TFMSA modified Ru/γ-Al_(2)O_(3)had been improved.Moreover,the kinetic and density functional theory(DFT)results suggested that the synergistic effects of adjacent Ru nanoparticles and acidic sites were crutial for promoting the rate-limiting conversion step of phenol HDO to cyclohexane.
基金funded by the National Natural Science Foundation of China (nos.21776273 21721004+6 种基金 21690080 21690082)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)the National Key Projects for Fundamental Research and Development of China (2016YFA0202801)Dalian Science Foundation for Distinguished Young Scholars (no.2015R005)Department of Science and Technology of Liaoning Province (under contract of 2015020086-101)100-talent project of Dalian Institute of Chemical Physics (DICP)
文摘A new route was developed for the synthesis of renewable decalin with cyclopentanone which can be derived from lignocellulose.It was found that 1,2,3,4,5,6,7,8-octahydronaphthalene could be selectively produced by the hydrogenation/dehydration/rearrangement of [1,1-bi(cyclopentylidene)]-2-one(i.e.the selfaldol condensation product of cyclopentanone) over a dual-bed catalyst system.Among the investigated catalysts,the Ru/C and Amberlyst-15 resin exhibited the highest activities for the hydrogenation of [1,1-bi(cyclopentylidene)]-2-one to [1,1-bi(cyclopentan)]-2-ol and the dehydration/rearrangement of [1,1-bi(cyclopentan)]-2-ol to 1,2,3,4,5,6,7,8-octahydronaphthalene,respectively.Using Ru/C and Amberlyst-15 resin as the first bed and the second bed catalysts,1,2,3,4,5,6,7,8-octahydronaphthalene was directly produced in high carbon yield(83.7%) under mild conditions(393 K,1 MPa).After being hydrogenated,the1,2,3,4,5,6,7,8-octahydronaphthalene was converted to decalin which can be used as additive to improve the thermal stability and volumetric heat value of jet fuel.
基金support from National Key Research and Development Program of China(2021YFC2103701)the National Postdoctoral Program of China(GZB20230630)the National Natural Science Foundation of China(22208295).
文摘Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs.
基金supported by the National Natural Science Foundation of China under Grant Number 62163009 and 61864001the Natural Science Foundation of GuangXi under Grant Number 2021JJD170019+2 种基金the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology)under Grant Number YQ23103Innovation Project of GuangXi Graduate Education under Grant Nos.YCSW2022277 and 2023YCXS184Guangxi Major Scientific and Technological Innovation Base(Guilin University of Electronic Technology)under Grant 231002-k.
文摘As a promising cancer treatment method,cold atmospheric plasma has received widespread attention in recent years.However,previous research has focused more on how to realize and expand the anti-cancer scope of plasma jet.There are also studies on the killing of small-scale cancer cells,but the effects of plasma jet on normal cells and normal cell clusters have been ignored.Therefore,we proposed a 50μm sized micro-plasma jet device,and used the device to treat melanoma cells(A-375)and human glial cells(HA1800)to evaluate their anti-cancer effects and effects on normal cells.The experimental results show that this kind of micro-plasma jet device can effectively inactivate cancer cells in a short period of time,while having little effect on normal cells.This work provides a certain experimental basis for the application offine plasma jet to clinically inactivate cancer cells.
基金This work was supported by the National Natural Science Foundation of China(No.82073793)the National Major Science and Technology Projects of China(No.2018ZX09721003-007/No.2018ZX09J18107).
文摘3D printing is a promising technology used in the fabrication of complex oral dosage delivery pharmaceuticals.This study first reports an innovative color jet 3D printing(CJ-3DP)technology to produce colorful cartoon levetiracetam pediatric preparations with high accuracy and reproducibility.For this study,the ideal printing ink consisted of 40%(v/v)isopropanol aqueous solution containing 0.05%(w/w)polyvinylpyrrolidone and 4%(w/w)glycerin,which was satisfied with scale-up of the production.The external and internal spatial structures of the tablets were designed to control the appearance and release,and cartoon tablets with admirable appearances and immediate release characteristics were printed.The dosage model showed a good linear relationship between the model volume and the tablet strength(r>0.999),which proved the potential of personalized administration.The surface roughness indicated that the appearance of the CJ-3DP tablets was significantly better than the first listed 3D printed drug(Spritam R).Moreover,the scanning electron microscopy and porosity results further showed that the tablets have a structure of loose interior and tight exterior,which could ensure good mechanical properties and rapid dispersion characteristics simultaneously.In conclusion,the innovative CJ-3DP technology can be used to fabricate personalized pediatric preparations for improved compliance.Due to the stable formulation and fabrication process,this technology has the potential in scale-up production.
基金supported by a grant from the Fundamental R&D Program for Core Technology of Materials (No.10051006)funded by the Ministry of Knowledge Economy, Republic of Koreasupported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20113020030050)
文摘LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infiltration from LNF porous backbones. Electrochemical properties and Cr-poisoning behavior of LNF-GDC cathodes were studied. Single phase perovskite LNF could be obtained at the glycine to nitrate molar ratio of 1:1. The polarization resistance of the LNF-GDC nanocomposite cathode was significantly decreased in comparison with the LNF. This phenomenon was associated with enhanced catalytic activity and enlarged triple-phase boundary (TPB) length by GDC nano particles. In addition, the nanocomposite cathode showed good Cr tolerance under open circuit condition. The LNF-GDC nanocomposite cathodes were expected for use as a potential cathode in intermediate- temperature solid oxide fuel cells (IT-SOFC).
文摘SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
基金Project(52022058)supported by the National Natural Science Foundation of ChinaProject(19160745400)supported by the Shanghai Science and Technology Committee,China。
文摘RP-3 jet fuel could be an alternative fuel for diesel engines.In this study,the injection characteristics of RP-3jet fuel under single and split injection strategies were investigated and compared with diesel fuel.The experimental results indicate that RP-3 jet fuel has slightly shorter injection delay time than diesel fuel,but this difference is negligible in actual engine operations.Further,although the lower density and viscosity of RP-3 jet fuel lead to higher volumetric injection rates and cycle-based injection quantities,the cycle-based injection mass and the mass injection rates at the stable injection stage of RP-3 jet fuel are close to or slightly lower than those of diesel fuel.Based on these experimental observations,it could be concluded that fuel physical properties are the secondary factor influencing the injection characteristics in both single and split injection strategies,as RP-3 jet fuel and diesel fuel are taken for comparison.
基金funded by grants from the National Natural Science Foundation of China(No.52236010,51876210)the Fundamental Research Funds for the Central Universities(No.2242022R10058)。
文摘In this work,a“cyclopentanone-vanillin”strategy was proposed for the preparation of jet fuel range cycloalkanes from lignocellulose-derived ketones and lignin-derived aldehydes via aldol condensation and hydrodeoxygenation(HDO).Ethanolamine lactate ionic liquid(LAIL)exhibited excellent catalytic activity in the aldol condensation of cyclopentanone and vanillin.Desired mono-condensation and bicondensation products were obtained with yield of 95.2%at 100℃.It is found that the synergy effects between amino group of ethanolamine and hydroxyl group of lactic acid play a key role in the aldol condensation.The condensation products were converted into cycloalkanes by HDO over 5%Pd/Nb_(2)O_(5)catalyst.The density of the obtained HDO products is 0.89 g/cm^(3)and the freezing point is lower than-60℃.These results suggest that the resulted cycloalkanes can be used as additives to improve the density and low-temperature fluidity of the jet fuels.
基金Project(2019YFC1907405)supported by the National Key R&D Program of ChinaProject(GJJ200809)supported by the Education Department Project Fund of Jiangxi Province,ChinaProject(2020BAB214021)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs.
文摘To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and to support the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, environment, energy) was applied to the three biomass ethanol fuel cycle alternatives, which includes cassava-based, corn-based and wheat-based ethanol fuel. The assessments provide a comparison of the economical performance, energy efficiency and environmental impacts of the three alternatives. And the development potential of the three alternatives in China was examined. The results are very useful for the Chinese government to make decisions on the biomass ethanol energy policy, and some advises for the decision-making of Chinese government were given.
文摘This work investigated multiple jet nozzles with various geometrical shape,number of exits,and material on reducing noise radiated from jet flows.Nozzles are categorized in two groups with few and many exit numbers,each with various exit shapes,slot and circular,and geometry.Firstly,nozzles are designed and then fabricated by a 3D printer,Form Labs,Form2USA,with polymeric resin.Also,the nozzle with the most noise reduction made of stainless steel.Noise and air thrust were measured at three air pressure gauges,3,5,7 BAR and directions from nozzle apex,30°,90°,135°.Nozzles with slot exit shape made of both plastic and stainless steel revealed the most noise reduction among all nozzles with few exit numbers,nearly 11–14 dB(A)and 11.5–15 dB(A),respectively.On average,slotted nozzle noise reduction was nearly 5–6 dB(A)more than finned nozzle.However,nozzles with more exit numbers,finned and finned-central exit,illustrated much more noise reduction than nozzles with few exit numbers,by almost 16–18 dB(A),they represented similar sound.All tested nozzles and open pipe demonstrated equal air thrust at each pressure gauges.The nozzles with slotted exit shape,either plastic or stainless steel,can provide reasonable noise reduction in comparison to other configuration with few exit numbers.In contrast,nozzles with more exit numbers demonstrated the most noise reduction.
基金supported by the National Natural Science Foundation of China(21825501 and 21808124)China Postdoctoral Science Foundation(2017M620049 and 2019T120098)。
文摘Oxygen reduction reaction(ORR)is of significance for energy conversion technologies such as fuel cells and metal-air batteries[1,2].Currently,the electrocatalysts still need to employ expensive precious metal platinum(Pt)as the main active component to overcome the sluggish kinetics of ORR[3,4].The exploration of low-cost.
基金This work was supported by the National Natural Sci-ence Foundation of China(No.22075262).
文摘Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon felt using chemical method and a composite modified anode was prepared through organic ligands coordination Fe^(3+)for better electro-chemical per-formance.Results show that the biofilm resistance of the composite modified anode(2707Ω)is 1.3 times greater than that of the unmodified anode(2100Ω),and its biofilm capacitance also increases by 2.2 times,indicating that the composite modification pro-motes the growth and attachment of electroactive bacteria on the anode.Its specific capacitance(887.8 Fm^(−2))is 3.7 times higher than that of unmodified anode,generating a maximum current density of 1.5Am^(−2).In their Tafel curves,the composite modified anodic exchange current density(5.25×10^(−6)Acm^(−2))is 5.8 times bigger than that of unmodified anode,which suggests that the electro-chemical activity of redox,anti-polarization ability and electron transfer kinetic activity are significantly enhanced.The marine sediment microbial fuel cell with the composite modified anode generates the higher power densities than the blank(203.8mWm^(−2) versus 45.07mWm^(−2)),and its current also increases by 4.4 times.The free amino groups on the anode surface expands a creative idea that the modified anode ligates the natural Fe(Ⅲ)ion in sea water in the MSMFCs for its higher power output.
基金supported by the National Natural Science Foundation of China(21373042)~~
文摘The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.
文摘The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmospheres in the temperature range of 500-900 ℃. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 ℃, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 ℃. In wet air, the sample is a mixed conductor of proton, oxide ion, and electronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942 0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 ℃, the maximum power output density is 110,2 mW/cm2, which is higher than that of our previous cell using Ba0.98Ce0.8Tm0.2O3-α (x〈≤1, RE=Y, Eu, Ho) as solid electrolyte.
基金supported by the National Natural Science Foundation of China (51372271,51172275)the National Basic Research Program of China (973 Program,2012CB215402)~~
文摘The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.