Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
We analyzed the relationship between several basic parameters describing supermassive black holes such as jet power,black hole spin,accretion disk magnetic field,black hole mass,etc.We found that there is a general co...We analyzed the relationship between several basic parameters describing supermassive black holes such as jet power,black hole spin,accretion disk magnetic field,black hole mass,etc.We found that there is a general correlation between these parameters,such as jet power is significantly positively correlated with black hole spin,while black hole mass is significantly negatively correlated with black hole spin.To apprehend these relationships,we consider the Blandford–Znajek model to be superior to the Blandford–Payne model.It is also found that the intrinsic gamma luminosity of the FSRQs has a positive correlation with the accretion disk magnetic field,while the intrinsic gamma luminosity of the BL Lacs has a negative correlation with the accretion disk magnetic field.A feedback effect may exist between accretion disk accretion rate and magnetic field,which may be the key to the evolution between BL Lacs and FSRQs.There is no significant difference in the jet power and jet generation efficiency of FSRQs and BL Lacs,which suggests that the jets are generated by the same mechanism.The contribution rate of accretion rate to jet generation efficiency is high,while the contribution rate of accretion rate to jet power is very low.展开更多
The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in...The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in high-energy nucleus-nucleus collisions.Within a next-to-leading-order perturbative QCD parton model for hard scatterings with modified fragmentation functions due to jet quenching controlled by q,we check the suppression and azimuthal anisotropy for large p_(T) hadrons,and extract q by global fits to RAA(pT)and v_(2)(pT)data in A+A collisions at RHIC and LHC,respectively.The numerical results from the best fits show that q∕T^(3) goes down with local medium-temperature T in the parton jet trajectory.Compared with the case of a constant q∕T^(3),the going-down T dependence of q∕T^(3) makes a hard parton jet to lose more energy near T_(c) and therefore strengthens the azimuthal anisotropy for large pT hadrons.As a result,v_(2)(p_(T))for large pT hadrons was enhanced by approximately 10%to better fit the data at RHIC/LHC.Considering the first-order phase transition from QGP to the hadron phase and the additional energy loss in the hadron phase,v_(2)(p_(T))is again enhanced by 5-10%at RHIC/LHC.展开更多
Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perfora...Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°.展开更多
To satisfy performance and long life requirements for hot forging die,Ni60-Cr3C2 composite coatings were prepared on the high-speed steel W6Mo5Cr4V2 using laser cladding technology.Laser clad coatings with different r...To satisfy performance and long life requirements for hot forging die,Ni60-Cr3C2 composite coatings were prepared on the high-speed steel W6Mo5Cr4V2 using laser cladding technology.Laser clad coatings with different ratios of Ni60:Cr3C2 were investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy-dispersive X-ray analysis(EDX) and micro-hardness tester,respectively.Specific heat capacity and thermal conductivity were measured by Laser Thermal Constant Meter.Thermal expansion coefficient and elastic modulus were measured by Dynamic Mechanical Thermal Analyzer and Electro-Hydraulic Servocontrolled Testing System,respectively.The results indicated that Ni60+50wt% Cr3C2 composite coating had dense and homogeneous structure,as well as a metallurgical bonding with the substrate.With the increase of Cr3C2 content,volume of chromium-containing compounds in the composite coating increased,microhardness increased and microstructure refined.The thermal physical parameters results showed that Ni60+50wt% Cr3C2 composite coating was overall worse than W6Mo5Cr4V2,but had a higher hot yield strength to alleviate hot fatigue and surface hot wear of hot forging die during hot forging and thus improve the service life of hot forging die.展开更多
A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of ...A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.展开更多
During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on...During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on the gas physical parameters, including the temperature, velocity and volume density of gas. It was found that, even in the case of optimized deposition parameters, the space distributions of gas parameters were heterogeneous due primarily to the thermal blockage come from the hot filaments and cryogenic pump effect arisen from the cold reactor wall. The distribution of volume density agreed well with the thermal round-flow phenomenon, one of the key obstacles to obtaining high growth rate in HFCVD process. In virtue of isothermal boundary with high temperature or adiabatic boundary condition of reactor wall, however, the thermal roundflow was profoundly reduced and as a consequence, the uniformity of gas physical parameters was considerably improved, as identified by the experimental films growth.展开更多
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic...Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.展开更多
As far as the accuracy of calculating unsteady temperature field is concerned, it is very important to find the accurate physical parameters such as specific heat, thermal conductivity, latent heat of phase transforma...As far as the accuracy of calculating unsteady temperature field is concerned, it is very important to find the accurate physical parameters such as specific heat, thermal conductivity, latent heat of phase transformation and surface heat flux. The model for calculating H and Q is established in this paper. The measurement methods and data processing for physical parameters such as volume specific heat C, thermal conductivity k, volume latent heat of phase transformation c1 and surface heat flux are introduced The physical parameters of 1Cr18Ni9Ti and 45 steels and the surface heat flux for 1 Cr18Ni9Ti probe cooled in water,10% NaCl water and oil with different temperatures are measured, respectively. These data show that the probability of absolute error less than 2* C between the calculated and measured values in temperature field calculation reaches above 80% if using the above physical parameters, which provides a reliable technology basis for precise calculation of temperature field.展开更多
A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the ...A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the complex rock physics model is expanded into Taylor series to get the first-order approximate expression of the inverse problem of rock physics;then the damped least square method is used to solve the linearized rock physics inverse problem directly to get the analytical solution of the rock physics inverse problem. This method does not need global optimization or random sampling, but directly calculates the inverse operation, with high computational efficiency. The theoretical model analysis shows that the linearized rock physical model can be used to approximate the complex rock physics model. The application of actual logging data and seismic data shows that the linearized rock physics inversion method can obtain accurate physical parameters. This method is suitable for linear or slightly non-linear rock physics model, but may not be suitable for highly non-linear rock physics model.展开更多
Exposure to sound,heat,and increased physical workload can change physiological parameters.This study was conducted to evaluate the effect of concomitant exposure to sound,heat,and physical workload changes on physiol...Exposure to sound,heat,and increased physical workload can change physiological parameters.This study was conducted to evaluate the effect of concomitant exposure to sound,heat,and physical workload changes on physiological parameters in controlled laboratory conditions.This experimental crosssectional study was conducted in 35 male university students with a mean age of 25.75 years and a mean BMI of 22.69 kg/m2.Systolic and diastolic blood pressure and heart rate were measured after 15 min rest in the laboratory,5 and 10 min after starting the experiment,and then after 20 min in controlled laboratory conditions in five combination modes.The combination modes were(Sound:65 dB,WBGT:22°C,Speed:1.7,Slope:10%),(Sound:65 dB,WBGT:22°C,Speed:3.4,Slope:14%),(Sound:95 dB,WBGT:22°C,Speed:1.7,Slope:10%),(Sound:65 dB,WBGT:32°C,Speed:1.7,Slope:10%),and(Sound:95 dB,WBGT:32°C,Speed:3.4,Slope:14%).Mixed model analysis and paired t-test were applied for analysis.The results showed that the mean physiological parameters(Systolic and diastolic blood pressure and heart rate)increased when different combination modes worsened(Sound from 65 to 95 dB,WBGT from 22°C to 32°C,speed from 1.7 to 3.4,and slope from 10%to 14%,and when sound:95 dB,WBGT:32°C,Speed:3.4,and Slope:14%).Moreover,the mean changes of systolic and diastolic blood pressure were significant in all conditions when compared with the reference condition(Sound:65 dB,WBGT:22°C,Speed:1.7,and Slope:10%).The mean heart rate changes were also significant except for exposure to the second condition(Sound:65 dB,WBGT:22°C,Speed:3.4,Slope:14%)and the third condition(Sound:95 dB,WBGT:22°C,Speed:1.7,Slope:10%).Exposure to hazardous levels of sound,heat,and workload has adverse effects on physiological parameters.Concomitant exposure to all three hazards has a synergistic effect and increases the adverse effect.展开更多
This paper derives the physical meanings of peak position, peak width and height of an X-ray diffraction peak from the analyses of the Bragg’s equation, the Scherrer’s formula and the principle of peak intensity cal...This paper derives the physical meanings of peak position, peak width and height of an X-ray diffraction peak from the analyses of the Bragg’s equation, the Scherrer’s formula and the principle of peak intensity calculation. The geometric characteristics of an asymmetric peak are clarified by means of experiment. The relationships between peak shape and domain size/lattice strain have been verified by geological events. Therefore this paper integrates the physical meanings of all 5 basic parameters for an X-ray diffraction peak. Applications of these 5 parameters are exemplified.展开更多
An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their...An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their impact on strength and ductility of the coating. Factorial experimental design technique was used to investigate and select the parameter combination to achieve a coating with adequate strength and ductility. Spindle speed, axial force and table traverse speed were observed to be the most significant factors on physical dimensions. It was observed that the thickness of the coating decreased as the coating width increased. In addition, the width and thickness of the coatings are higher at low and high torques. At intermediate torque values, when the force is high, the width of the coating is high, and its thickness is thin; and when the force is low, the width and thickness are low. The interaction effect between axial force(F)-table traverse speed(Vx) and spindle speed(N)-table traverse speed(Vx) produced an increasing effect on coating width and thickness, but other interactions exhibited decreasing influence. It has also been observed that sound coatings could be obtained in a narrow set of parameter range as the substrate-coating materials are metallurgically incompatible and have a propensity to form brittle intermetallics.展开更多
The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. B...The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.展开更多
The acquisition of seabed physical parameters is one of the focuses of marine acoustic researches.However,the activesource ocean bottom seismometer(OBS)detection method in the marine geophysical research is rarely use...The acquisition of seabed physical parameters is one of the focuses of marine acoustic researches.However,the activesource ocean bottom seismometer(OBS)detection method in the marine geophysical research is rarely used to acquire seabed physical parameters,and less work is performed in the Arctic.In this study,two active-source OBS data collected from the 9th and 11th Chinese National Arctic Research Expedition(CHINARE)are selected to obtain the physical parameters of seabed sediments.Two kinds of energy spark are used as the active sources,while the cost function inversion method is used based on the arrival time difference between the reflected and direct waves.The thickness and sound velocity of the sediment layers are obtained by inversion,and the empirical formula is used to calculate the physical parameters of the seabed sediment,which are compared with the measured results.The cost function inversion method based on the time difference of arrival of the reflected and direct waves is tested to be effective and feasible in the inversion of seabed parameters from active-source OBS data.The method is further applied to obtain the physical parameters of Chukchi seabed sediments,which provides the idea and reference for the application of marine geophysical activesource OBS detection technology in the inversion of polar seabed physical parameters.展开更多
Thunderstorms are very spectacular super-long-range discharge processes in the atmosphere, which can cause tremendous damage in an instant, often leading to casualties, resulting in damage to buildings, power supply s...Thunderstorms are very spectacular super-long-range discharge processes in the atmosphere, which can cause tremendous damage in an instant, often leading to casualties, resulting in damage to buildings, power supply systems, communication equipment and forest fires, causing major economic losses. In order to successfully predict thunderstorms, and many economic losses can be avoided. Using the observation data of two county stations in Yimeng County and Zhangwu County from June to August 2009-2015, 40 typical thunderstorm weather processes were selected, and 15 convective parameters related to thunderstorm activities were calculated. After statistical analysis, there are seven convective parameters with significant correlation with thunderstorm activity: convective affective potential energy (CAPE), 850 hPa specific humidity, 700 hPa specific humidity, 850 hPa false equivalent temperature, maximum rising speed, strong weather threat index (SWEAT) and zero degree height (ZH), and the correlation is greater than 0.3. We determined the forecast threshold of the above forecasting factors, calculated the fitting rate and conducted a test report. We used the pup product to establish a short-term proximity indicator for thunderstorm warning. Three products with combined reflectivity, vertical integrated liquid water content and echo top height were selected as warning indicators for thunderstorms. The above research results were used to forecast the thunderstorm weather from June to August in the year of 2015 and 2016. The forecast accuracy rate is more than 85%. In summary, the above methods have reference value and indicative significance for the forecast and warning of thunderstorm weather in Fuxin City, China.展开更多
This paper examines the influence of physical parameters on the collapse dynamics of a spherical bubble filled with diatomic gas(κ=7/5).The problem is formulated by the Rayleigh–Plesset dynamical equation,whose nume...This paper examines the influence of physical parameters on the collapse dynamics of a spherical bubble filled with diatomic gas(κ=7/5).The problem is formulated by the Rayleigh–Plesset dynamical equation,whose numerical solutions are carried out by Maple.Our studies show that each physical parameter affects the bubble collapse dynamics in different degree,which reveals that bubble collapse dynamics must considers all the parameters including liquid viscosity,surface tension,etc,else the outcome cannot be trusted.展开更多
Objective: The study aims to investigate some physical and technological parameters of varieties of maize collected from the most representative areas of maize production in the southern part of Benin, and mainly used...Objective: The study aims to investigate some physical and technological parameters of varieties of maize collected from the most representative areas of maize production in the southern part of Benin, and mainly used by the populations of those areas. Method: The chemical composition, physical and technological characteristics of the grains were determined using standard methods. Results: The results showed that the weight of 1000 grains ranges from 158.01 to 305.12 g, the length from 0.79 to 1.81 cm, the average width from 0.74 to 1.51 cm, thickness from 0.36 to 0.85 cm and density from 1.07 to 1.25. Regarding the technological parameters, the hardness of the grains before and after cooking was between 16.78 and 47.20 kgf, and 0.23 and 0.71 kgf respectively, while the cooking time varies from 71.00 and 158.33 mn. There was a positive and significant correlation (r = 0.405;p < 0.026) between the hardness after cooking and the weight of 1000 grains, between the hardness after cooking and grain width (r = 0.460;p < 0.011). A positive and highly significant correlation (r = 0.527, p < 0.003) was also observed between the hardness after cooking and the grain length, between the hardness after cooking and the thickness of grain (r = 0.476, p < 0.008), and between the grain density and the weight of 1000 grains (r = 0.481, p < 0.007). A positive and highly significant correlation (r = 0.923, p < 0.000) was also observed between maize grain length and width, and between grain length and grain thickness (r = 0.764, p < 0.000) and between the width and thickness (r = 0.764, p < 0.000). On the other hand, a significant negative correlation (r = -0.394, p < 0.031) was found between the hardness before cooking and the thickness and between the hardness before cooking and sphericity index (r = -0465*, p Conclusion: Through its chemical and technological characteristics the maize constitutes an important raw material for many culinary recipes in West African region.展开更多
In a pulsed vacuum discharge,the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode.In this paper,the effects of resistance and capacitance ...In a pulsed vacuum discharge,the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode.In this paper,the effects of resistance and capacitance on the anode side on the discharge characteristics and the generation characteristics of plasma jet are investigated.Results show that the existence of a resistor on the anode side can increase the anode potential,thereby preventing charged particles from entering the anode and promoting the ejection of charged particles along the axis of the insulating sleeve nozzle.The application of a capacitor on the anode side can not only absorb electrons at the initial stage of discharge,increasing the peak value of the cathode hump potential,but also prevent charged particles from moving to the anode,thereby improving the ejection performance of the plasma jet.In addition,the use of a larger resistance and a smaller capacitance can improve the blocking effect on charged particles and further improve the ejection performance of the plasma jet.Results of this study will provide a reference for the improvement of the ejection performance of plasma jets and their applications.展开更多
The effect of seasonal variations in physical parameters on quality of gravity flow water was investigated in Kyanamira Sub-County, Kabale District, Uganda. The seasonal variations in the physical parameters (pH, temp...The effect of seasonal variations in physical parameters on quality of gravity flow water was investigated in Kyanamira Sub-County, Kabale District, Uganda. The seasonal variations in the physical parameters (pH, temperature, electrical conductivity (EC), turbidity, colour, total dissolved solids (TDS), and total suspended solids (TSS)) were determined during wet and dry seasons. Composite samples from gravity flow water sources were collected monthly from March to August, 2014 and then analyzed. Temperature was measured using thermometer;pH, EC and TDS were determined using a multimeter, turbidity, colour and total suspended solids were determined by spectrophotometric method. TDS, pH and temperature were the most contributing parameters to water quality variations in both seasons. The mean pH values varied between 3.78 - 4.84 from March to August, 2014 at all study sites. These pH values were consistently below the WHO permissible range of 6.5 - 8.5. Similarly, total suspended solids varied between 0.66 - 2.17 mg·L<sup>-1</sup> and were well above the recommended WHO limit of zero mg·L<sup>-1</sup> at all study sites. Turbidity mean values varied between 0.83 - 3.7 NTU and were outside the recommended limits of 3 NTU at Kigata (3.7 NTU) only. Temperatures (20.3°C - 21.15°C) for all the study sites were within the recommended limit of 20°C - 30°C in water for domestic purposes. The mean values of physical parameters for the wet season were: temperature (21.12°C), colour (12.5 PtCoU), turbidity (3.4 NTU), TDS (76.76 mg·L<sup>-1</sup>), TSS (2.13 mg·L<sup>-1</sup>), pH (4.19) and EC (152.7 μS·cm<sup>-1</sup>) were different from those of the dry season (temperature (20.99°C), colour (0.93 PtCoU), turbidity (0.53 NTU), TDS (77.33 mg·L<sup>-1</sup>), TSS (0.67 mg·L<sup>-1</sup>), pH (4.86) and EC (158.65 μS·cm<sup>-1</sup>). Basing on these findings above, it was evident to justify discouraging the use of gravity flow water at these study sites for domestic purposes without proper treatment.展开更多
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported by the National Natural Science Foundation of China(NSFC,grant No.11063004)。
文摘We analyzed the relationship between several basic parameters describing supermassive black holes such as jet power,black hole spin,accretion disk magnetic field,black hole mass,etc.We found that there is a general correlation between these parameters,such as jet power is significantly positively correlated with black hole spin,while black hole mass is significantly negatively correlated with black hole spin.To apprehend these relationships,we consider the Blandford–Znajek model to be superior to the Blandford–Payne model.It is also found that the intrinsic gamma luminosity of the FSRQs has a positive correlation with the accretion disk magnetic field,while the intrinsic gamma luminosity of the BL Lacs has a negative correlation with the accretion disk magnetic field.A feedback effect may exist between accretion disk accretion rate and magnetic field,which may be the key to the evolution between BL Lacs and FSRQs.There is no significant difference in the jet power and jet generation efficiency of FSRQs and BL Lacs,which suggests that the jets are generated by the same mechanism.The contribution rate of accretion rate to jet generation efficiency is high,while the contribution rate of accretion rate to jet power is very low.
基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)Science and Technology Program of Guangzhou(No.2019050001)National Science Foundation of China(Nos.12347130 and 11935007).
文摘The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in high-energy nucleus-nucleus collisions.Within a next-to-leading-order perturbative QCD parton model for hard scatterings with modified fragmentation functions due to jet quenching controlled by q,we check the suppression and azimuthal anisotropy for large p_(T) hadrons,and extract q by global fits to RAA(pT)and v_(2)(pT)data in A+A collisions at RHIC and LHC,respectively.The numerical results from the best fits show that q∕T^(3) goes down with local medium-temperature T in the parton jet trajectory.Compared with the case of a constant q∕T^(3),the going-down T dependence of q∕T^(3) makes a hard parton jet to lose more energy near T_(c) and therefore strengthens the azimuthal anisotropy for large pT hadrons.As a result,v_(2)(p_(T))for large pT hadrons was enhanced by approximately 10%to better fit the data at RHIC/LHC.Considering the first-order phase transition from QGP to the hadron phase and the additional energy loss in the hadron phase,v_(2)(p_(T))is again enhanced by 5-10%at RHIC/LHC.
基金The authors gratefully acknowledge the financial support by the Marine Economy Development Foundation of Guangdong Province“Technical Support for Stimulation and Testing of Gas Hydrate Reservoirs”(GDNRC[2022]44).
文摘Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°.
基金Funded by the National Natural Science Foundation of China (No.50675165)the Fundamental Research Funds for the Central Universities (No.2010-II-025)
文摘To satisfy performance and long life requirements for hot forging die,Ni60-Cr3C2 composite coatings were prepared on the high-speed steel W6Mo5Cr4V2 using laser cladding technology.Laser clad coatings with different ratios of Ni60:Cr3C2 were investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy-dispersive X-ray analysis(EDX) and micro-hardness tester,respectively.Specific heat capacity and thermal conductivity were measured by Laser Thermal Constant Meter.Thermal expansion coefficient and elastic modulus were measured by Dynamic Mechanical Thermal Analyzer and Electro-Hydraulic Servocontrolled Testing System,respectively.The results indicated that Ni60+50wt% Cr3C2 composite coating had dense and homogeneous structure,as well as a metallurgical bonding with the substrate.With the increase of Cr3C2 content,volume of chromium-containing compounds in the composite coating increased,microhardness increased and microstructure refined.The thermal physical parameters results showed that Ni60+50wt% Cr3C2 composite coating was overall worse than W6Mo5Cr4V2,but had a higher hot yield strength to alleviate hot fatigue and surface hot wear of hot forging die during hot forging and thus improve the service life of hot forging die.
基金Project supported by the National Natural Science Foundation of China(Nos.90205016 and 50176055)
文摘A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.
基金This work was partially supported by the National Natural Science Foundation of China (NSFC) under Contract No. 59292800 the Science and Technology Committee of Liaoning Province.
文摘During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on the gas physical parameters, including the temperature, velocity and volume density of gas. It was found that, even in the case of optimized deposition parameters, the space distributions of gas parameters were heterogeneous due primarily to the thermal blockage come from the hot filaments and cryogenic pump effect arisen from the cold reactor wall. The distribution of volume density agreed well with the thermal round-flow phenomenon, one of the key obstacles to obtaining high growth rate in HFCVD process. In virtue of isothermal boundary with high temperature or adiabatic boundary condition of reactor wall, however, the thermal roundflow was profoundly reduced and as a consequence, the uniformity of gas physical parameters was considerably improved, as identified by the experimental films growth.
基金supported by the National Natural Science Foundation of China (No.50609028)
文摘Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.
文摘As far as the accuracy of calculating unsteady temperature field is concerned, it is very important to find the accurate physical parameters such as specific heat, thermal conductivity, latent heat of phase transformation and surface heat flux. The model for calculating H and Q is established in this paper. The measurement methods and data processing for physical parameters such as volume specific heat C, thermal conductivity k, volume latent heat of phase transformation c1 and surface heat flux are introduced The physical parameters of 1Cr18Ni9Ti and 45 steels and the surface heat flux for 1 Cr18Ni9Ti probe cooled in water,10% NaCl water and oil with different temperatures are measured, respectively. These data show that the probability of absolute error less than 2* C between the calculated and measured values in temperature field calculation reaches above 80% if using the above physical parameters, which provides a reliable technology basis for precise calculation of temperature field.
基金Supported by the China National Science and Technology Major Project(2017ZX05049-002,2016ZX05027004-001)the National Natural Science Foundation of China(41874146,41674130)+2 种基金Fundamental Research Funds for the Central University(18CX02061A)Innovative Fund Project of China National Petroleum Corporation(2016D-5007-0301)Scientific Research&Technology Development Project of China National Petroleum Corporation(2017D-3504).
文摘A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the complex rock physics model is expanded into Taylor series to get the first-order approximate expression of the inverse problem of rock physics;then the damped least square method is used to solve the linearized rock physics inverse problem directly to get the analytical solution of the rock physics inverse problem. This method does not need global optimization or random sampling, but directly calculates the inverse operation, with high computational efficiency. The theoretical model analysis shows that the linearized rock physical model can be used to approximate the complex rock physics model. The application of actual logging data and seismic data shows that the linearized rock physics inversion method can obtain accurate physical parameters. This method is suitable for linear or slightly non-linear rock physics model, but may not be suitable for highly non-linear rock physics model.
基金The authors sincerely thank the deputy of research and technology affiliated to Shiraz University of Medical Sciences for financial support from this study,in the form of a research project by Mr.Hossein Molaeifar approved by the University on No.10652.
文摘Exposure to sound,heat,and increased physical workload can change physiological parameters.This study was conducted to evaluate the effect of concomitant exposure to sound,heat,and physical workload changes on physiological parameters in controlled laboratory conditions.This experimental crosssectional study was conducted in 35 male university students with a mean age of 25.75 years and a mean BMI of 22.69 kg/m2.Systolic and diastolic blood pressure and heart rate were measured after 15 min rest in the laboratory,5 and 10 min after starting the experiment,and then after 20 min in controlled laboratory conditions in five combination modes.The combination modes were(Sound:65 dB,WBGT:22°C,Speed:1.7,Slope:10%),(Sound:65 dB,WBGT:22°C,Speed:3.4,Slope:14%),(Sound:95 dB,WBGT:22°C,Speed:1.7,Slope:10%),(Sound:65 dB,WBGT:32°C,Speed:1.7,Slope:10%),and(Sound:95 dB,WBGT:32°C,Speed:3.4,Slope:14%).Mixed model analysis and paired t-test were applied for analysis.The results showed that the mean physiological parameters(Systolic and diastolic blood pressure and heart rate)increased when different combination modes worsened(Sound from 65 to 95 dB,WBGT from 22°C to 32°C,speed from 1.7 to 3.4,and slope from 10%to 14%,and when sound:95 dB,WBGT:32°C,Speed:3.4,and Slope:14%).Moreover,the mean changes of systolic and diastolic blood pressure were significant in all conditions when compared with the reference condition(Sound:65 dB,WBGT:22°C,Speed:1.7,and Slope:10%).The mean heart rate changes were also significant except for exposure to the second condition(Sound:65 dB,WBGT:22°C,Speed:3.4,Slope:14%)and the third condition(Sound:95 dB,WBGT:22°C,Speed:1.7,Slope:10%).Exposure to hazardous levels of sound,heat,and workload has adverse effects on physiological parameters.Concomitant exposure to all three hazards has a synergistic effect and increases the adverse effect.
基金NNSFCproject"Incipientmetamorphismofclasticrocks ,exemplifiedbytheProterozoicandtheLowerPaleozoicinthenorth certralpartofHunanProvince,China" (No .49872 0 33) .
文摘This paper derives the physical meanings of peak position, peak width and height of an X-ray diffraction peak from the analyses of the Bragg’s equation, the Scherrer’s formula and the principle of peak intensity calculation. The geometric characteristics of an asymmetric peak are clarified by means of experiment. The relationships between peak shape and domain size/lattice strain have been verified by geological events. Therefore this paper integrates the physical meanings of all 5 basic parameters for an X-ray diffraction peak. Applications of these 5 parameters are exemplified.
文摘An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their impact on strength and ductility of the coating. Factorial experimental design technique was used to investigate and select the parameter combination to achieve a coating with adequate strength and ductility. Spindle speed, axial force and table traverse speed were observed to be the most significant factors on physical dimensions. It was observed that the thickness of the coating decreased as the coating width increased. In addition, the width and thickness of the coatings are higher at low and high torques. At intermediate torque values, when the force is high, the width of the coating is high, and its thickness is thin; and when the force is low, the width and thickness are low. The interaction effect between axial force(F)-table traverse speed(Vx) and spindle speed(N)-table traverse speed(Vx) produced an increasing effect on coating width and thickness, but other interactions exhibited decreasing influence. It has also been observed that sound coatings could be obtained in a narrow set of parameter range as the substrate-coating materials are metallurgically incompatible and have a propensity to form brittle intermetallics.
基金supported by the National Natural Science Foundation of China(Nos.11732011,11672205,and 11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.
基金supported by the National Key R&D Program of China(No.2021YFC2801200)the National Natural Science Foundation of China(No.42076224)the Fundamental Research Funds for the Central Universities(No.201964015)。
文摘The acquisition of seabed physical parameters is one of the focuses of marine acoustic researches.However,the activesource ocean bottom seismometer(OBS)detection method in the marine geophysical research is rarely used to acquire seabed physical parameters,and less work is performed in the Arctic.In this study,two active-source OBS data collected from the 9th and 11th Chinese National Arctic Research Expedition(CHINARE)are selected to obtain the physical parameters of seabed sediments.Two kinds of energy spark are used as the active sources,while the cost function inversion method is used based on the arrival time difference between the reflected and direct waves.The thickness and sound velocity of the sediment layers are obtained by inversion,and the empirical formula is used to calculate the physical parameters of the seabed sediment,which are compared with the measured results.The cost function inversion method based on the time difference of arrival of the reflected and direct waves is tested to be effective and feasible in the inversion of seabed parameters from active-source OBS data.The method is further applied to obtain the physical parameters of Chukchi seabed sediments,which provides the idea and reference for the application of marine geophysical activesource OBS detection technology in the inversion of polar seabed physical parameters.
文摘Thunderstorms are very spectacular super-long-range discharge processes in the atmosphere, which can cause tremendous damage in an instant, often leading to casualties, resulting in damage to buildings, power supply systems, communication equipment and forest fires, causing major economic losses. In order to successfully predict thunderstorms, and many economic losses can be avoided. Using the observation data of two county stations in Yimeng County and Zhangwu County from June to August 2009-2015, 40 typical thunderstorm weather processes were selected, and 15 convective parameters related to thunderstorm activities were calculated. After statistical analysis, there are seven convective parameters with significant correlation with thunderstorm activity: convective affective potential energy (CAPE), 850 hPa specific humidity, 700 hPa specific humidity, 850 hPa false equivalent temperature, maximum rising speed, strong weather threat index (SWEAT) and zero degree height (ZH), and the correlation is greater than 0.3. We determined the forecast threshold of the above forecasting factors, calculated the fitting rate and conducted a test report. We used the pup product to establish a short-term proximity indicator for thunderstorm warning. Three products with combined reflectivity, vertical integrated liquid water content and echo top height were selected as warning indicators for thunderstorms. The above research results were used to forecast the thunderstorm weather from June to August in the year of 2015 and 2016. The forecast accuracy rate is more than 85%. In summary, the above methods have reference value and indicative significance for the forecast and warning of thunderstorm weather in Fuxin City, China.
文摘This paper examines the influence of physical parameters on the collapse dynamics of a spherical bubble filled with diatomic gas(κ=7/5).The problem is formulated by the Rayleigh–Plesset dynamical equation,whose numerical solutions are carried out by Maple.Our studies show that each physical parameter affects the bubble collapse dynamics in different degree,which reveals that bubble collapse dynamics must considers all the parameters including liquid viscosity,surface tension,etc,else the outcome cannot be trusted.
文摘Objective: The study aims to investigate some physical and technological parameters of varieties of maize collected from the most representative areas of maize production in the southern part of Benin, and mainly used by the populations of those areas. Method: The chemical composition, physical and technological characteristics of the grains were determined using standard methods. Results: The results showed that the weight of 1000 grains ranges from 158.01 to 305.12 g, the length from 0.79 to 1.81 cm, the average width from 0.74 to 1.51 cm, thickness from 0.36 to 0.85 cm and density from 1.07 to 1.25. Regarding the technological parameters, the hardness of the grains before and after cooking was between 16.78 and 47.20 kgf, and 0.23 and 0.71 kgf respectively, while the cooking time varies from 71.00 and 158.33 mn. There was a positive and significant correlation (r = 0.405;p < 0.026) between the hardness after cooking and the weight of 1000 grains, between the hardness after cooking and grain width (r = 0.460;p < 0.011). A positive and highly significant correlation (r = 0.527, p < 0.003) was also observed between the hardness after cooking and the grain length, between the hardness after cooking and the thickness of grain (r = 0.476, p < 0.008), and between the grain density and the weight of 1000 grains (r = 0.481, p < 0.007). A positive and highly significant correlation (r = 0.923, p < 0.000) was also observed between maize grain length and width, and between grain length and grain thickness (r = 0.764, p < 0.000) and between the width and thickness (r = 0.764, p < 0.000). On the other hand, a significant negative correlation (r = -0.394, p < 0.031) was found between the hardness before cooking and the thickness and between the hardness before cooking and sphericity index (r = -0465*, p Conclusion: Through its chemical and technological characteristics the maize constitutes an important raw material for many culinary recipes in West African region.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019YJS187)National Natural Science Foundation of China(No.51577011)。
文摘In a pulsed vacuum discharge,the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode.In this paper,the effects of resistance and capacitance on the anode side on the discharge characteristics and the generation characteristics of plasma jet are investigated.Results show that the existence of a resistor on the anode side can increase the anode potential,thereby preventing charged particles from entering the anode and promoting the ejection of charged particles along the axis of the insulating sleeve nozzle.The application of a capacitor on the anode side can not only absorb electrons at the initial stage of discharge,increasing the peak value of the cathode hump potential,but also prevent charged particles from moving to the anode,thereby improving the ejection performance of the plasma jet.In addition,the use of a larger resistance and a smaller capacitance can improve the blocking effect on charged particles and further improve the ejection performance of the plasma jet.Results of this study will provide a reference for the improvement of the ejection performance of plasma jets and their applications.
文摘The effect of seasonal variations in physical parameters on quality of gravity flow water was investigated in Kyanamira Sub-County, Kabale District, Uganda. The seasonal variations in the physical parameters (pH, temperature, electrical conductivity (EC), turbidity, colour, total dissolved solids (TDS), and total suspended solids (TSS)) were determined during wet and dry seasons. Composite samples from gravity flow water sources were collected monthly from March to August, 2014 and then analyzed. Temperature was measured using thermometer;pH, EC and TDS were determined using a multimeter, turbidity, colour and total suspended solids were determined by spectrophotometric method. TDS, pH and temperature were the most contributing parameters to water quality variations in both seasons. The mean pH values varied between 3.78 - 4.84 from March to August, 2014 at all study sites. These pH values were consistently below the WHO permissible range of 6.5 - 8.5. Similarly, total suspended solids varied between 0.66 - 2.17 mg·L<sup>-1</sup> and were well above the recommended WHO limit of zero mg·L<sup>-1</sup> at all study sites. Turbidity mean values varied between 0.83 - 3.7 NTU and were outside the recommended limits of 3 NTU at Kigata (3.7 NTU) only. Temperatures (20.3°C - 21.15°C) for all the study sites were within the recommended limit of 20°C - 30°C in water for domestic purposes. The mean values of physical parameters for the wet season were: temperature (21.12°C), colour (12.5 PtCoU), turbidity (3.4 NTU), TDS (76.76 mg·L<sup>-1</sup>), TSS (2.13 mg·L<sup>-1</sup>), pH (4.19) and EC (152.7 μS·cm<sup>-1</sup>) were different from those of the dry season (temperature (20.99°C), colour (0.93 PtCoU), turbidity (0.53 NTU), TDS (77.33 mg·L<sup>-1</sup>), TSS (0.67 mg·L<sup>-1</sup>), pH (4.86) and EC (158.65 μS·cm<sup>-1</sup>). Basing on these findings above, it was evident to justify discouraging the use of gravity flow water at these study sites for domestic purposes without proper treatment.