The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging fr...The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.展开更多
Most vein minerals deposited in fractures of the Jialingjiang Formation from Libixia section, Hechan area include a large amount of saddle dolomite and accompanying celestite, calcite and fluorite. This study analyzed...Most vein minerals deposited in fractures of the Jialingjiang Formation from Libixia section, Hechan area include a large amount of saddle dolomite and accompanying celestite, calcite and fluorite. This study analyzed the nature, source, evolution of the fluids by plane-light petrography, fluid-inclusion methods, cathodoluminescence images, and stable isotopic compositions. The homogenization temperatures of two-phase aqueous fluid inclusions in dolomite range between 100 and 270℃. Combined with the jlSO data, it is suggested that the fluid responsible for the precipitation of fracture fillings have δ18O values between 10%o and 18‰ (relative to SMOW). The saddle dolomite and the accompanying minerals were the result of activity of dense brines at elevated temperatures. Moreover, analysis shows that the fluid was derived from a mixture of marine-derived brine and deeper circulating flow. This fluid was enriched in Sr during diagenesis and formed celestite in fracture and for regional mineralization. Dissolution of saddle dolomite was attributed to the cooling of Mg/Ca-decreased fluids, which may relate to a leaching of gypsum to celestite in surrounding carbonates.展开更多
Polyhalite generally formed in the early diagenetic stage.It is formed by the brine which rich in K+and Mg2+and adverse reaction with the gypsum,anhydrite,glauberite(Pierre,1985;Peryt et al.,2005;Leitner et al.,
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40602016)the National Key Basic Research and Development Planning Project (2006CB202307).
文摘The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.
基金supported by the National Natural Science Foundation of China(grants no.41272130 and 41172099)support provided by Key Laboratory for Sedimentary Basin and Oil and Gas Resources of MLR(grant no.zdsys2014003)
文摘Most vein minerals deposited in fractures of the Jialingjiang Formation from Libixia section, Hechan area include a large amount of saddle dolomite and accompanying celestite, calcite and fluorite. This study analyzed the nature, source, evolution of the fluids by plane-light petrography, fluid-inclusion methods, cathodoluminescence images, and stable isotopic compositions. The homogenization temperatures of two-phase aqueous fluid inclusions in dolomite range between 100 and 270℃. Combined with the jlSO data, it is suggested that the fluid responsible for the precipitation of fracture fillings have δ18O values between 10%o and 18‰ (relative to SMOW). The saddle dolomite and the accompanying minerals were the result of activity of dense brines at elevated temperatures. Moreover, analysis shows that the fluid was derived from a mixture of marine-derived brine and deeper circulating flow. This fluid was enriched in Sr during diagenesis and formed celestite in fracture and for regional mineralization. Dissolution of saddle dolomite was attributed to the cooling of Mg/Ca-decreased fluids, which may relate to a leaching of gypsum to celestite in surrounding carbonates.
基金supported by Major state basic research development program (No.2011CB 403007)
文摘Polyhalite generally formed in the early diagenetic stage.It is formed by the brine which rich in K+and Mg2+and adverse reaction with the gypsum,anhydrite,glauberite(Pierre,1985;Peryt et al.,2005;Leitner et al.,