Xizhang trench is located 10 km northwest of Taiyuan city, Shanxi Province, in front of a NNW-trending scarp of 4.6m height on the northern segment of the Jiaocheng fault zone. The dimensions of the trench are 108m in...Xizhang trench is located 10 km northwest of Taiyuan city, Shanxi Province, in front of a NNW-trending scarp of 4.6m height on the northern segment of the Jiaocheng fault zone. The dimensions of the trench are 108m in length, 8m in width, and 10m in depth. There are 18 horizons revealed in the trench. The upper strata are sandy loam; the upper strata of the downthrown block of the fault are gravels, the lower ones are an interbed of brown loam and sandy loam. The strata on the upthrown block of the fault are sandy loam containing gravel. The trench shows 3 fault planes, and the upper offset point on the fault plane is 1.5m below the ground surface, the newest dislocated stratum is (3.74±0.06) ka BP. The trench reveals a lot of deformation traces, such as fault planes, dislocated strata, colluvial wedges and formation tilting. The relationship between strata and faults in the trench shows that 3 paleoearthquake events have occurred at the Jiaocheng fault zone since the Early Holocene, they are about (3.74±0.06)- (3.06±0.26)ka BP, (8.35±0.09)ka- (3.74±0.06)ka BP, and( 10.66±0.85) - (8.35±0.09)ka BP. The average interval among the events is 2.6 - 3.6ka. The minimum coseismic vertical displacements of the 3 events are 3.0m, 2.5m and 3.2m, respectively. The significance of Xizhang trench is that the Jiaocheng fault used to be active thousands of years ago, though there is no M ≥ 7.0 earthquake recorded in historical documents. Evidence of new Jiaocheng fault zone activity during the Holocene is important for the earthquake safety assessment of Taiynan city in the future.展开更多
Paleomagnetic and rock magnetic study has been conducted on the Early Triassicred beds of Liujiagou Formation from Jiaocheng, Shanxi Province. Hematite was shown as themain magnetic mineral. After eradicating an initi...Paleomagnetic and rock magnetic study has been conducted on the Early Triassicred beds of Liujiagou Formation from Jiaocheng, Shanxi Province. Hematite was shown as themain magnetic mineral. After eradicating an initial viscous component at room temperature to~100℃-200℃, thermal demagnetization shows that most samples contain two remanencecomponents, intermediate-temperature remanence component at 250℃-500℃ and high-tem-perature component at 500℃-680℃. The intermediate-temperature component has a negativefold test at the 95% confidence level. And the pole position of the intermediate-temperaturecomponent in geographic coordinates is correlated with the Middle Jurassic reference pole of theNorth China Block (NCB) within the 95% confidence, suggesting that it might be a remagnetiza-tion component acquired during the Yanshanian period. The high-temperature component con-tains both reversal and normal polarities with positive fold test and C-level positive reversal test atthe 95% confidence level, which suggests that this high-temperature component can be regardedas primary magnetization. Comparison of this newly obtained Early Triassic paleopole with thecoeval mean pole of the Ordos Basin suggests that a locally relative rotation may have happenedbetween the Ordos and the Jiaocheng area of Shanxi Province. This rotation may be related withtwo faults: one is Lishi big fault separating Ordos from Shanxi and the other is Jiaocheng big fault,which is situated in the southeast of sampling locality and was still in motion during the Cenozoic.展开更多
基金sponsored by the program of "ActiveFault Test Detectionin City" of the National Development and Reform Commission,PRC.
文摘Xizhang trench is located 10 km northwest of Taiyuan city, Shanxi Province, in front of a NNW-trending scarp of 4.6m height on the northern segment of the Jiaocheng fault zone. The dimensions of the trench are 108m in length, 8m in width, and 10m in depth. There are 18 horizons revealed in the trench. The upper strata are sandy loam; the upper strata of the downthrown block of the fault are gravels, the lower ones are an interbed of brown loam and sandy loam. The strata on the upthrown block of the fault are sandy loam containing gravel. The trench shows 3 fault planes, and the upper offset point on the fault plane is 1.5m below the ground surface, the newest dislocated stratum is (3.74±0.06) ka BP. The trench reveals a lot of deformation traces, such as fault planes, dislocated strata, colluvial wedges and formation tilting. The relationship between strata and faults in the trench shows that 3 paleoearthquake events have occurred at the Jiaocheng fault zone since the Early Holocene, they are about (3.74±0.06)- (3.06±0.26)ka BP, (8.35±0.09)ka- (3.74±0.06)ka BP, and( 10.66±0.85) - (8.35±0.09)ka BP. The average interval among the events is 2.6 - 3.6ka. The minimum coseismic vertical displacements of the 3 events are 3.0m, 2.5m and 3.2m, respectively. The significance of Xizhang trench is that the Jiaocheng fault used to be active thousands of years ago, though there is no M ≥ 7.0 earthquake recorded in historical documents. Evidence of new Jiaocheng fault zone activity during the Holocene is important for the earthquake safety assessment of Taiynan city in the future.
文摘Paleomagnetic and rock magnetic study has been conducted on the Early Triassicred beds of Liujiagou Formation from Jiaocheng, Shanxi Province. Hematite was shown as themain magnetic mineral. After eradicating an initial viscous component at room temperature to~100℃-200℃, thermal demagnetization shows that most samples contain two remanencecomponents, intermediate-temperature remanence component at 250℃-500℃ and high-tem-perature component at 500℃-680℃. The intermediate-temperature component has a negativefold test at the 95% confidence level. And the pole position of the intermediate-temperaturecomponent in geographic coordinates is correlated with the Middle Jurassic reference pole of theNorth China Block (NCB) within the 95% confidence, suggesting that it might be a remagnetiza-tion component acquired during the Yanshanian period. The high-temperature component con-tains both reversal and normal polarities with positive fold test and C-level positive reversal test atthe 95% confidence level, which suggests that this high-temperature component can be regardedas primary magnetization. Comparison of this newly obtained Early Triassic paleopole with thecoeval mean pole of the Ordos Basin suggests that a locally relative rotation may have happenedbetween the Ordos and the Jiaocheng area of Shanxi Province. This rotation may be related withtwo faults: one is Lishi big fault separating Ordos from Shanxi and the other is Jiaocheng big fault,which is situated in the southeast of sampling locality and was still in motion during the Cenozoic.