The earthquake stress-drop values of two sequences were accurately calculated after taking away the effects due to regional earthquake anelastic attenuation and station site response,using waveform data and seismic ph...The earthquake stress-drop values of two sequences were accurately calculated after taking away the effects due to regional earthquake anelastic attenuation and station site response,using waveform data and seismic phase data of sequences of the Jinggu M_S6. 6,and Ludian M_S6. 5 earthquakes in Yunnan. These results show that the stress drop with magnitude increases within the scope of this study of magnitude. After eliminating the influence of the magnitude,the average value of stress-drop in the Jinggu sequence is higher than that of the Ludian sequence at the same magnitude range. This may be related to the stress state in different regions. In terms of the changes of time and space of stress-drop,before M_S5. 8 strong aftershock,the stress-drop is "slowing down-turning up-keeping a high value"after the mainshock,meanwhile,almost all of the abnormally high stress drop value is distributed around the M_S5. 8 strong aftershock, showing that the stress environment in the region was increasing after the mainshock. And after the M_S5. 9 strong aftershock,stress-drop rapidly declines to a relatively stable state,meanwhile,the high value of stress-drop is distributed around the strong aftershock,showing that the regional tectonic stress gets more fully release,its stress environment begins to rapidly decrease.For the Ludian sequence without a strong aftershock occurring,the average value of stress drop is lower than that of the Jinggu earthquake sequence at the same magnitude range,while at the same time,the stress-drop of the aftershock sequence almost hasn't changed much. In the time after the mainshock,combined with the release characteristics of the main energy,the stress in the region is excessively released,the subsequent stress in the region gradually returns to normal. This may be the reason why the activity of Ludianaftershocks significantly was weaker and subsequently there were no strong aftershocks occurred.展开更多
Based on the study of high-precision gravity data obtained from recent studies and the regional gravi- ty network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of ...Based on the study of high-precision gravity data obtained from recent studies and the regional gravi- ty network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of the Yunnan Jinggu M6.6 earthquake.展开更多
Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. ...Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. There is a question of why the two events with almost the same level of magnitude caused differences in earthquake damage. To understand the uniqueness of the phenomenon, this paper focuses on the characteristics of the ground motions and post-earthquake field investigation for the two events. Firstly, we present an overview of the residuals between the Ludian earthquake and the Jinggu earthquake based on the YW06 Ground Motion Prediction Equation (GMPE), and explain the unusual destructiveness of the strong ground motion. Then we analyze the ground motion recordings at selected typical station, based on the strong motion parameters: equivalent predominant frequency and Arias intensity. The result exhibits a good agreement with the Chinese seismic intensity scale. This study would be helpful to gain a better knowledge of the characteristics and variability of ground motions for Ms6 class earthquakes in China and to understand the implications to future earthquakes with similar focal mechanism and local condition.展开更多
Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( ...Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( 1 km×1 kin) for rapid loss assessment ibr the Jinggu Ms6.6 earthquake. The resuhs indicate that the method reflects the actual population and housing distribution and that the assessment results are eredihle. The method can be used to quickly provide spatial orientation disaster information after an earthquake.展开更多
Based on Continuous GPS (CGPS) observation data of the Crustal Movement Observation Network of China (CMONOC) and the Sichuan Continuous Operational Reference System ( SCCORS), we calculated the horizontal cosei...Based on Continuous GPS (CGPS) observation data of the Crustal Movement Observation Network of China (CMONOC) and the Sichuan Continuous Operational Reference System ( SCCORS), we calculated the horizontal coseismic displacements of CGPS sites caused by the 2013 Lushan Mw 6.6 earthquake. The resuits indicate that the horizontal coseismic deformations of CGPS stations are consistent with thrust-compression rupture. Furthermore, the sites closest to the epicenter underwent significant coseismic displacements. Three network stations exhibited displacements greater than 9 mm ( the largest is 20.9 mm at SCTQ) , while the others were displaced approximately 1 -4 mm.展开更多
It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip ...It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.展开更多
Based on the digital waveforms of the Xinjiang Digital Seismic Network,the Jinghe M_S6.6 earthquake sequence( M_L≥1. 0) were relocated by HypoDD,The characteristics of the spatial distribution and the seismogenic str...Based on the digital waveforms of the Xinjiang Digital Seismic Network,the Jinghe M_S6.6 earthquake sequence( M_L≥1. 0) were relocated by HypoDD,The characteristics of the spatial distribution and the seismogenic structure of this earthquake sequence were analyzed. The results show that the main shock is relocated at 44. 2639° N,82. 8294° E,and the initial rupture depth is 17. 6 km. The earthquake sequence clearly demonstrates a unilateral extension of about 20 km in the EW direction,and is mainly located at a depth of 7km-17 km. The depth profile along the aftershock direction shows that the focal depth of aftershocks tend to be shallower within 10 km to the west of the main shock,the focal depth of the aftershock sequence with the tail direction deflecting SW is deeper. The depth profile perpendicular to the earthquake sequence shows a gradual deepening of the seismic sequence from north to south,which indicates that the fault plane is dipping south.According to the focal mechanism solution,given by the Institute of Geophysics,China Earthquake Administration,and the geological structure of the seismic source region,it is inferred that the seismogenic structure of the Jinghe M_S 6.6 earthquake may be the eastern segment of the Kusongmuxieke fault.展开更多
基金supported by the“Catalogue of Earthquake Sequence in the Chinese Mainland”of Department of Monitoring and Prediction,China Earthquake Administration(1740503502)
文摘The earthquake stress-drop values of two sequences were accurately calculated after taking away the effects due to regional earthquake anelastic attenuation and station site response,using waveform data and seismic phase data of sequences of the Jinggu M_S6. 6,and Ludian M_S6. 5 earthquakes in Yunnan. These results show that the stress drop with magnitude increases within the scope of this study of magnitude. After eliminating the influence of the magnitude,the average value of stress-drop in the Jinggu sequence is higher than that of the Ludian sequence at the same magnitude range. This may be related to the stress state in different regions. In terms of the changes of time and space of stress-drop,before M_S5. 8 strong aftershock,the stress-drop is "slowing down-turning up-keeping a high value"after the mainshock,meanwhile,almost all of the abnormally high stress drop value is distributed around the M_S5. 8 strong aftershock, showing that the stress environment in the region was increasing after the mainshock. And after the M_S5. 9 strong aftershock,stress-drop rapidly declines to a relatively stable state,meanwhile,the high value of stress-drop is distributed around the strong aftershock,showing that the regional tectonic stress gets more fully release,its stress environment begins to rapidly decrease.For the Ludian sequence without a strong aftershock occurring,the average value of stress drop is lower than that of the Jinggu earthquake sequence at the same magnitude range,while at the same time,the stress-drop of the aftershock sequence almost hasn't changed much. In the time after the mainshock,combined with the release characteristics of the main energy,the stress in the region is excessively released,the subsequent stress in the region gradually returns to normal. This may be the reason why the activity of Ludianaftershocks significantly was weaker and subsequently there were no strong aftershocks occurred.
基金supported by the National Natural Science Foundation of China(41304059,41304059)the Seismic Industry Research Project(201308004)
文摘Based on the study of high-precision gravity data obtained from recent studies and the regional gravi- ty network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of the Yunnan Jinggu M6.6 earthquake.
基金supported by the National Key R&D Program of China No. 2017YFC1500801the National Natural Science Fundation of China granted Nos. 51778589 and 51308515+1 种基金Heilongjiang Province Natural Science Fund granted No. E2017065the National Key Research and Development Program granted No. 2017YFC150165
文摘Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. There is a question of why the two events with almost the same level of magnitude caused differences in earthquake damage. To understand the uniqueness of the phenomenon, this paper focuses on the characteristics of the ground motions and post-earthquake field investigation for the two events. Firstly, we present an overview of the residuals between the Ludian earthquake and the Jinggu earthquake based on the YW06 Ground Motion Prediction Equation (GMPE), and explain the unusual destructiveness of the strong ground motion. Then we analyze the ground motion recordings at selected typical station, based on the strong motion parameters: equivalent predominant frequency and Arias intensity. The result exhibits a good agreement with the Chinese seismic intensity scale. This study would be helpful to gain a better knowledge of the characteristics and variability of ground motions for Ms6 class earthquakes in China and to understand the implications to future earthquakes with similar focal mechanism and local condition.
基金supported by the Special Scientific Research Fund of China Earthquake Administration(201308018-5,201108002)
文摘Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( 1 km×1 kin) for rapid loss assessment ibr the Jinggu Ms6.6 earthquake. The resuhs indicate that the method reflects the actual population and housing distribution and that the assessment results are eredihle. The method can be used to quickly provide spatial orientation disaster information after an earthquake.
基金supported by National Natural Science Foundation of China(41074016)
文摘Based on Continuous GPS (CGPS) observation data of the Crustal Movement Observation Network of China (CMONOC) and the Sichuan Continuous Operational Reference System ( SCCORS), we calculated the horizontal coseismic displacements of CGPS sites caused by the 2013 Lushan Mw 6.6 earthquake. The resuits indicate that the horizontal coseismic deformations of CGPS stations are consistent with thrust-compression rupture. Furthermore, the sites closest to the epicenter underwent significant coseismic displacements. Three network stations exhibited displacements greater than 9 mm ( the largest is 20.9 mm at SCTQ) , while the others were displaced approximately 1 -4 mm.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)
文摘It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.
基金jointly funded by the Scientific Research Project of Jinghe MS6.6 Earthquake-Anatomy of Jinghe M S6.6 Earthquake and Strong Earthquake Trend Following and Prediction in Northern Tianshan Mountains,Institute of Earthquake Forecasting,CEA(1747074512)the National Natural Science Foundation of China(41672208)+1 种基金Science for Earthquake Resilience(XH17043Y)Science Fund for Earthquake Agency of Xin Jiang Uygur Autonomous Region(201705)
文摘Based on the digital waveforms of the Xinjiang Digital Seismic Network,the Jinghe M_S6.6 earthquake sequence( M_L≥1. 0) were relocated by HypoDD,The characteristics of the spatial distribution and the seismogenic structure of this earthquake sequence were analyzed. The results show that the main shock is relocated at 44. 2639° N,82. 8294° E,and the initial rupture depth is 17. 6 km. The earthquake sequence clearly demonstrates a unilateral extension of about 20 km in the EW direction,and is mainly located at a depth of 7km-17 km. The depth profile along the aftershock direction shows that the focal depth of aftershocks tend to be shallower within 10 km to the west of the main shock,the focal depth of the aftershock sequence with the tail direction deflecting SW is deeper. The depth profile perpendicular to the earthquake sequence shows a gradual deepening of the seismic sequence from north to south,which indicates that the fault plane is dipping south.According to the focal mechanism solution,given by the Institute of Geophysics,China Earthquake Administration,and the geological structure of the seismic source region,it is inferred that the seismogenic structure of the Jinghe M_S 6.6 earthquake may be the eastern segment of the Kusongmuxieke fault.