According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimize...According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimized to ensure construction safety. New drainage tunnels were considered. Furthermore, lining structures and grouting pressures were modified during the excavation of tunnels. The construction scheme was updated dynamically based on the complex geological conditions. For instances, the diversion tunnels were first excavated by drilling and blasting method at the first stage of construction, and then by the combination method of tunnel boring machine (TBM) and drilling and blasting, and finally by drilling and blasting method. Through optimized scheme and updated construction scheme, the excavation of diversion tunnel #1 was successfully completed in June, 2011. This paper summarizes the key issues in rock mechanics associated with the construction of the long and deep diversion tunnels at Jinping II hydropower station. The experiences of design and construction obtained from this project could provide reference to similar projects.展开更多
The four diversion tunnels at Jinping Ⅱ hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500-2000 m and a maximum depth of 2525 m.The tunnel structure ...The four diversion tunnels at Jinping Ⅱ hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500-2000 m and a maximum depth of 2525 m.The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m^3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones(EDZs), and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittleeductileeplastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.展开更多
Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The pr...Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The proposed coring scheme is numerically modeled first,and then it is verified by comparative laboratory tests using rock samples both obtained by conventional coring method and the proposed damage-free coring method.The result indicates that the in-situ stresses in sampling area could be reduced by 30%-50% through drilling a certain number of destressing holes around the whole sampling area.The spacing between adjacent destressing holes is about 10 cm.The average uniaxial compressive strength(UCS) of rock samples obtained by the damage-free coring method in Jinping II hydropower station with overburden depth of 1 900 m is higher than that of samples obtained by the conventional coring method with the same depth by 5%-15% and an average of 8%.In addition,the effectiveness of damage-free coring method can also be verified by acoustic emission(AE) monitoring.The AE events monitored during uniaxial compression test of damage-free coring samples is fewer than that of conventional coring samples at the primarily loading phase.展开更多
文摘According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimized to ensure construction safety. New drainage tunnels were considered. Furthermore, lining structures and grouting pressures were modified during the excavation of tunnels. The construction scheme was updated dynamically based on the complex geological conditions. For instances, the diversion tunnels were first excavated by drilling and blasting method at the first stage of construction, and then by the combination method of tunnel boring machine (TBM) and drilling and blasting, and finally by drilling and blasting method. Through optimized scheme and updated construction scheme, the excavation of diversion tunnel #1 was successfully completed in June, 2011. This paper summarizes the key issues in rock mechanics associated with the construction of the long and deep diversion tunnels at Jinping II hydropower station. The experiences of design and construction obtained from this project could provide reference to similar projects.
文摘The four diversion tunnels at Jinping Ⅱ hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500-2000 m and a maximum depth of 2525 m.The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m^3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones(EDZs), and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittleeductileeplastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.
基金Supported by the National Basic Research Program of China (973 Program) (2010CB732003)the National Natural Science Foundation of China (51009013,50909077)
文摘Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The proposed coring scheme is numerically modeled first,and then it is verified by comparative laboratory tests using rock samples both obtained by conventional coring method and the proposed damage-free coring method.The result indicates that the in-situ stresses in sampling area could be reduced by 30%-50% through drilling a certain number of destressing holes around the whole sampling area.The spacing between adjacent destressing holes is about 10 cm.The average uniaxial compressive strength(UCS) of rock samples obtained by the damage-free coring method in Jinping II hydropower station with overburden depth of 1 900 m is higher than that of samples obtained by the conventional coring method with the same depth by 5%-15% and an average of 8%.In addition,the effectiveness of damage-free coring method can also be verified by acoustic emission(AE) monitoring.The AE events monitored during uniaxial compression test of damage-free coring samples is fewer than that of conventional coring samples at the primarily loading phase.