The 26 November 2005 Jiujiang-Ruichang, Jiangxi, Ms 5.7 earthquake occurred in a seismotectonic setting of moderate earthquake. The northwest-trending Xiangfan-Guangji fault (XFG) does not enter into the epicenter v...The 26 November 2005 Jiujiang-Ruichang, Jiangxi, Ms 5.7 earthquake occurred in a seismotectonic setting of moderate earthquake. The northwest-trending Xiangfan-Guangji fault (XFG) does not enter into the epicenter vicinity, but the northeast-trending Ruichang-Wuning fault (RWF) as a regional fault extends to the epicenter nearby, appearing as the Ruichang basin and its marginal faults. Tilting of the Ruichang Basin (RCB) in the Quaternary was controlled by the RCB southeast- marginal, buried fault (RSMBF). Shallow geophysical survey reveals that the RSMBF caused an offset of the reflection layers. Drill hole columnar section demonstrates that there are about 10-12 m displacement in the lower section of the middle-Pleistocene Series along the RSMBF, but no disruption is found in the upper section of the middle-Pleistocene Series. The RSMBF not only has activity in the Quaternary, but also coincides with the nodal plane I from the focal mechanism of the Jiujiang- Ruichang Ms 5.7 earthquake. This evidence, including aftershock distribution and isoseismic lines, strongly suggests that the RSMBF might be the seismogenic tectonics. The RWF is discontinuous at the surface, and consists of three en echelon Quaternary basins, which are the Ruichang, Fanzhen and Wuning basins. Three moderate earthquakes, the Fanzhen ML 4.9 earthquake, the Yejiapu ML 4.1 earthquake and the Jiujiang-Ruichang Ms 5.7 earthquake, have happened in the basins since 1995. The seismogenic tectonics of the Jiujiang-Ruichang Ms 5.7 earthquake is not isolated, but may be controlled by the RWF at depth, the slip of which causes the accumulation of energy for earthquake occurrence.展开更多
Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the foc...Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored.展开更多
Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area....Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth.展开更多
东雷湾矽卡岩型铜钼金多金属矿床位于九瑞矿集区西北部。本文利用锆石LA-MC-ICP MS U-Pb同位素定年方法,对东雷湾的主要岩体花岗闪长斑岩成岩时代进行研究,获得花岗闪长斑岩的锆石U-Pb年龄为(142.24±0.52)Ma;同时采用辉钼矿Re-Os...东雷湾矽卡岩型铜钼金多金属矿床位于九瑞矿集区西北部。本文利用锆石LA-MC-ICP MS U-Pb同位素定年方法,对东雷湾的主要岩体花岗闪长斑岩成岩时代进行研究,获得花岗闪长斑岩的锆石U-Pb年龄为(142.24±0.52)Ma;同时采用辉钼矿Re-Os同位素定年方法对矿床石英硫化物中的辉钼矿进行定年,首次获得东雷湾矿床的成矿年龄:6件辉钼矿的Re-Os同位素模式年龄范围为(144.8±3.1)^(147.1±2.4)Ma,加权平均年龄为(146.12±0.97)Ma,等时线年龄为(143.3±5.2)Ma。成岩年龄与成矿年龄在误差范围内一致,存在较短的成岩成矿时差,表明成岩成矿过程连续。辉钼矿的Re含量指示东雷湾矿床的成矿作用与岩浆壳幔混合作用有关。东雷湾矿区的成岩成矿时代与九瑞矿集区典型岩体和矿床的成岩成矿时代相似,同时也与长江中下游地区铜陵、安庆和鄂东南(部分地区)的典型铜多金属矿床的成岩成矿时代基本一致。结合区域地质资料,本文认为东雷湾矿床是中国东部东西向印支期构造域向北东向古太平洋构造域构造体制大转折晚期成矿作用的产物。展开更多
文摘The 26 November 2005 Jiujiang-Ruichang, Jiangxi, Ms 5.7 earthquake occurred in a seismotectonic setting of moderate earthquake. The northwest-trending Xiangfan-Guangji fault (XFG) does not enter into the epicenter vicinity, but the northeast-trending Ruichang-Wuning fault (RWF) as a regional fault extends to the epicenter nearby, appearing as the Ruichang basin and its marginal faults. Tilting of the Ruichang Basin (RCB) in the Quaternary was controlled by the RCB southeast- marginal, buried fault (RSMBF). Shallow geophysical survey reveals that the RSMBF caused an offset of the reflection layers. Drill hole columnar section demonstrates that there are about 10-12 m displacement in the lower section of the middle-Pleistocene Series along the RSMBF, but no disruption is found in the upper section of the middle-Pleistocene Series. The RSMBF not only has activity in the Quaternary, but also coincides with the nodal plane I from the focal mechanism of the Jiujiang- Ruichang Ms 5.7 earthquake. This evidence, including aftershock distribution and isoseismic lines, strongly suggests that the RSMBF might be the seismogenic tectonics. The RWF is discontinuous at the surface, and consists of three en echelon Quaternary basins, which are the Ruichang, Fanzhen and Wuning basins. Three moderate earthquakes, the Fanzhen ML 4.9 earthquake, the Yejiapu ML 4.1 earthquake and the Jiujiang-Ruichang Ms 5.7 earthquake, have happened in the basins since 1995. The seismogenic tectonics of the Jiujiang-Ruichang Ms 5.7 earthquake is not isolated, but may be controlled by the RWF at depth, the slip of which causes the accumulation of energy for earthquake occurrence.
基金This research was supported by the Joint Earthquake Science Foundation (A07124)the project of"Application of Digital Seismic Data to Short-impending Tracing"of China Earthquake Administration (120602-06-114)
文摘Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored.
基金sponsored by the China Spark Program of Earthquake Science and Technology(XH12027)the Three-Combination Topics of China Earthquake Administration of"Research on the Crustal Medium Anisotropy in the Jiujiang-Ruichang Earthquake Area"the Special Fund of Seismic Industry Research(201008007)
文摘Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth.
文摘东雷湾矽卡岩型铜钼金多金属矿床位于九瑞矿集区西北部。本文利用锆石LA-MC-ICP MS U-Pb同位素定年方法,对东雷湾的主要岩体花岗闪长斑岩成岩时代进行研究,获得花岗闪长斑岩的锆石U-Pb年龄为(142.24±0.52)Ma;同时采用辉钼矿Re-Os同位素定年方法对矿床石英硫化物中的辉钼矿进行定年,首次获得东雷湾矿床的成矿年龄:6件辉钼矿的Re-Os同位素模式年龄范围为(144.8±3.1)^(147.1±2.4)Ma,加权平均年龄为(146.12±0.97)Ma,等时线年龄为(143.3±5.2)Ma。成岩年龄与成矿年龄在误差范围内一致,存在较短的成岩成矿时差,表明成岩成矿过程连续。辉钼矿的Re含量指示东雷湾矿床的成矿作用与岩浆壳幔混合作用有关。东雷湾矿区的成岩成矿时代与九瑞矿集区典型岩体和矿床的成岩成矿时代相似,同时也与长江中下游地区铜陵、安庆和鄂东南(部分地区)的典型铜多金属矿床的成岩成矿时代基本一致。结合区域地质资料,本文认为东雷湾矿床是中国东部东西向印支期构造域向北东向古太平洋构造域构造体制大转折晚期成矿作用的产物。