期刊文献+
共找到1,106篇文章
< 1 2 56 >
每页显示 20 50 100
Impact of volcanism on the formation and hydrocarbon generation of organic-rich shale in the Jiyang Depression, Bohai Bay Basin, China
1
作者 Jia-Hong Gao Xin-Ping Liang +5 位作者 Zhi-Jun Jin Quan-You Liu Chang-Rong Li Xiao-Wei Huang Ju-Ye Shi Peng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1539-1551,共13页
Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the o... Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China. 展开更多
关键词 Volcanic ash Hydrocarbon generation Organic-rich shale Shahejie Formation jiyang Depression
下载PDF
Shale oil development techniques and application based on ternary-element storage and flow concept in Jiyang Depression,Bohai Bay Basin,East China
2
作者 YANG Yong 《Petroleum Exploration and Development》 SCIE 2024年第2期380-393,共14页
The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 hor... The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression. 展开更多
关键词 jiyang Depression continental shale oil reservoir space fracturing stimulation fracture network storage and flow theory 3D development high and stable production
下载PDF
Mapping and resource evaluation of deep high-temperature geothermal resources in the Jiyang Depression,China
3
作者 Shaozheng Wang Yaoqi Zhou +5 位作者 Xin Zhang Yangzhou Wang Yonghong Yang Yuehan Shang Yang Chen Xiaoxin Shi 《Energy Geoscience》 EI 2024年第4期142-155,共14页
In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“d... In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“dual carbon”goals and the transition of energy structure.The Jiyang Depression in the Bohai Bay Basin has vast potential for deep,high-temperature geothermal resources.By analyzing data from 2187 wells with temperature logs and 270 locations for temperature measurement in deep strata,we mapped the geothermal field of shallow to medium-deep layers in the Jiyang Depression using ArcGIS and predicted the temperatures of deep layers with a burial depth of 4000 m.Through stochastic modeling and numerical simulation,a reservoir attribute parameter database for favorable deep,high-temperature geothermal areas was developed,systematically characterizing the spatial distribution of geothermal resources within a play fairway of 139.5 km2 and estimating the exploitable deep geothermal resource potential by using the heat storage method and Monte Carlo data analysis.The study reveals that the Fan 54 well block in the Boxing-Jijia region is of prime significance to develop deep,high-temperature geothermal resources in the Jiyang Depression.Strata from the Cenozoic to the Upper Paleozoic are identified as effective cap layers for these deep geothermal resources.The Lower Paleozoic capable of effectively storing thermal energy and possessing an exploitable resource volume up to 127 million tons of standard coal,is identified as a target system for the development of deep high-temperature geothermal resources,providing significant insights for the efficient development of geothermal resources in the Jiyang Depression. 展开更多
关键词 Deep high-temperature geothermal resource Geological modeling Resource assessment Lower Paleozoic jiyang Depression
下载PDF
Distribution and Geochemical Characteristics of Hydrogen in Natural Gas from the Jiyang Depression, Eastern China 被引量:8
4
作者 MENG Qingqiang SUN Yuhua +4 位作者 TONG Jianyu FU Qi ZHU Jun ZHU Dongya JIN Zhijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1616-1624,共9页
Hydrogen gas accelerates hydrocarbon generation, but little is known about its distribution and origin in petroliferous basins, which has hindered the further exploration.Taken the Jiyang Depression in eastern China a... Hydrogen gas accelerates hydrocarbon generation, but little is known about its distribution and origin in petroliferous basins, which has hindered the further exploration.Taken the Jiyang Depression in eastern China as an example, this study collected natural gas from different tectonic units, and analyzed various geochemical characters including gas contents, and carbon and hydrogen isotopic composition.The result shows that:(1) hydrogen gas is widespread distributed, but its content is very low, which typically ranges from 0.01% to 0.1% in this region;(2) the ratios of H2/3He, indicative of the origins of hydrogen gas, suggest that mantle-derived hydrogen is dominant.Even in tectonically stable areas absent with deep fluid activities, there is also mantle-derived;(3) the isotopic composition of hydrogen falls in the range of –798‰ to –628‰(relative to VSMOW standard).In areas with deep-derived fluids, the hydrogen gas has a similar isotopic composition with the previously documented deep-sourced gas, with lighter isotopic composition.In contrast, hydrogen gas has a heavier isotopic composition in relatively stable areas.The isotopic signatures suggest that there is a mixture of mantle- and crust-derived hydrogen gas in the relatively stable area, which is consistent with the H2/3He ratios.Therefore, it is clear that the hydrogen gas has a much wider distribution than found in the deep-derived fluid area, resulting in a much broader area with hydrogenating effect for resource rock.This understanding will provide new insights for hydrocarbon generation research and resource assessment in petroliferous basins. 展开更多
关键词 ISOTOPE GENESIS hydrogen gas deep fluid jiyang Depression
下载PDF
Exploration of Subtle Trap in Jiyang Depression 被引量:5
5
作者 LiPilong ZhangShanwen XiaoHuanqin WangYongshi QiuGuiqiang 《Petroleum Science》 SCIE CAS CSCD 2004年第2期13-21,34,共10页
This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reserv... This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reservoir) and 8 groups, then summarizes the common feature and founding discipline of the subtle trap and finds 4 accumulating modes including steep slope mode, depression mode, center anticline mode and gentle slope mode. Its main exploration methods are explicated from the viewpoint of reservoir geological modeling, description of recognizing traps and comprehensive evaluation of reservoir and so on. 展开更多
关键词 jiyang depression subtle trap accumulation mode reservoir geological modeling description of recognizing traps reservoir comprehensive evaluation
下载PDF
Formation Conditions and Sedimentary Model of Over-Flooding Lake Deltas within Continental Lake Basins: An Example from the Paleogene in the Jiyang Subbasin, Bohai Bay Basin 被引量:3
6
作者 WANG Jian CAO Yingchang +1 位作者 LIU Huimin GAO Yongjin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期270-284,共15页
A large quantity of drilling core, paleontology, geochemistry and geophysics data revealed several features of the Jiyang subbasin during the deposition of the Ekl-ES4x members: (1) the paleotopography of the gentl... A large quantity of drilling core, paleontology, geochemistry and geophysics data revealed several features of the Jiyang subbasin during the deposition of the Ekl-ES4x members: (1) the paleotopography of the gentle slope belt had an extremely low gradient; (2) the paleoclimate frequently alternated between dry and wet periods in a generally arid setting; (3) there was strong weathering around the periphery of the basin; (4) the lake was very shallow; (5) the lake level frequently rose and fell; and (6) the sedimentary environment of the gentle slope belt was an over- flooding lake. All of these factors provided favorable geological conditions for the development of an over-flooding lake delta. The lithologies of the continental over-flooding lake delta deposits are complex and diverse. The compositional maturity is moderate to low, and the grain size distribution curves and sedimentary structures indicate the presence of both gravity and traction currents. The sedimentary microfacies associations consist of a combination of ordered superposition of flood channels, distributary channels and sheet sands. The delta exhibits a weak foreset seismic reflection. The over-flooding lake delta deposits are laterally extensive. The sandstone content is high, and the individual sandstone beds are thin. The flood channel and distributary channel deposits exhibit evidence of bifurcation and lateral migration. The distribution of the sandbodies and the oxidation color of the mudstones provide evidence of cyclic deposition. The paleoclimate was the dominant factor controlling the development of the over-flooding lake delta. Due to the frequently alternating wet and dry paleoclimates, the over-flooding lake delta is characterized by the development of a broad upper plain and a lower delta plain. The upper delta plain is characterized by flood channel deposits, whereas the lower delta plain is represented by distributary channel deposits. The transition zone is characterized by the interaction of flood channels and distributary channels. Due to fault activity, the sandbodies of the over-flooding lake delta were juxtaposed against hydrocarbon source rocks, which was favorable for the development of lithologic reservoirs or structural-lithologic reservoirs. The lower delta plain deposits comprise the most favorable reservoirs. 展开更多
关键词 jiyang subbasin continental basin over-flooding lake delta sedimentary model oil andgas exploration
下载PDF
Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China 被引量:7
7
作者 WANG Min MA Rui +4 位作者 LI Jinbu LU Shuangfang LI Chuanming GUO Zhiqiang LI Zheng 《Petroleum Exploration and Development》 2019年第4期833-846,共14页
To determine the occurrence mechanism and mobility of shale oil in the Shahejie Formation in the Jiyang Depression, organic geochemistry analysis, thin-section petrological observation, low-temperature nitrogen adsorp... To determine the occurrence mechanism and mobility of shale oil in the Shahejie Formation in the Jiyang Depression, organic geochemistry analysis, thin-section petrological observation, low-temperature nitrogen adsorption, high-pressure mercury intrusion porosimetry, field emission scanning electron microscopy experiments were conducted on shale samples to reveal its storage mechanism, including pore size, ratio of adsorbed oil to free oil, mobility and its influencing factors, and mode of storage. Residual shale oil is mainly present in pores less than 100 nm in diameter under the atmospheric temperature and pressure. The lower limit of pore size for free oil is 5 nm, and the lower limit of pore size for movable oil occurrence is about 30 nm. The light components, low TOC and high porosity are the main factors contributing to the high proportion of movable oil. Each type of pore can contain residual shale oil, but not all pores have shale oil. Pore connectivity and surface wettability are the determinants of shale oil enrichment degree and enrichment state. 展开更多
关键词 SHALE OIL absorbed OIL free OIL OCCURRENCE mechanism PALEOGENE Shahejie Formation jiyang Depression Bohai BAY Basin
下载PDF
Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China 被引量:3
8
作者 SONG Mingshui LIU Huimin +1 位作者 WANG Yong LIU Yali 《Petroleum Exploration and Development》 2020年第2期242-253,共12页
Based on formation testing data of more than 40 wells with industrial oil flow, systematic observation of 1 010.26 m long cores taken from 4 wells and test data of over 10 000 core samples combining with drilling and ... Based on formation testing data of more than 40 wells with industrial oil flow, systematic observation of 1 010.26 m long cores taken from 4 wells and test data of over 10 000 core samples combining with drilling and pilot fracturing data of multiple wells, the geological characteristics of the upper submember of the Sha 4 Member to the lower submember of the Sha 3 Member of Paleogene(Es4s-Es3x) in the Jiyang Depression were investigated to find out factors controlling the enrichment of shale oil and the accumulation model of shale oil, and a comprehensive evaluation method for shale oil sweet spots was established. It is found through the study that the target shale layer is characterized by strong heterogeneity, weak diagenesis, low thermal evolution and high content of clay and carbonate minerals. Shale lithofacies, microcrack, thin interlayer and abnormal pressure are the main factors affecting enrichment and stable production of shale oil, the organic rich laminar shale has the best storage and oil-bearing capacity, microcrack network system improve the storage capacity and permeability of the shale, the thin interlayer is the main flow channel for stable shale oil production, and the abnormal high pressure layer is rich in free state shale oil and high in oil content. The shale oil layers in the target section were divided into three types: matrix, interlayer and fracture ones. According to the occurrence state and exploration practice of shale oil at home and abroad, it is concluded that the interlayer shale oil is the most profitable type at present. The selection parameters for the different types of shale oil were determined, and accordingly the favorable areas were pointed out by comprehensive evaluation of multiple factors. Vertical wells in the interlayer shale oil reservoir, such as Fan 159, Fan 143 and GX 26, were stimulated by volume fracturing and high conductivity channel fracturing jointly. After fracturing, they had a daily oil production of over 6 t, up to 44 t, and stable productivity. Shale oil is expected to become an important replacement energy resource in the Jiyang Depression. 展开更多
关键词 shale oil enrichment elements enrichment model shale oil sweet spot lithofacies MICROCRACK thin interlayer abnormal pressure jiyang Depression
下载PDF
Origin and diagenetic evolution of dolomites in Paleogene Shahejie Formation lacustrine organic shale of Jiyang Depression,Bohai Bay Basin,East China 被引量:1
9
作者 TENG Jianbin QIU Longwei +1 位作者 ZHANG Shoupeng MA Cunfei 《Petroleum Exploration and Development》 CSCD 2022年第6期1251-1265,共15页
The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotop... The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotopic composition, and trace element and rare earth element analyses. The results show that the development of dolomite is limited in the lacustrine organic rich shale of Shahejie Formation in the study area. Three kinds of dolomite minerals can be identified: primary dolomite(D1), penecontemporaneous dolomite(D2), and ankerite(Ak). D1 has the structure of primary spherical dolomite, high magnesium and high calcium, with order degree of 0.3-0.5, and is characterized by the intracrystalline corrosion and coexistence of secondary enlargement along the outer edge. D2 has the characteristics of secondary enlargement, order degree of 0.5-0.7, high magnesium, high calcium and containing a little iron and manganese elements. Ak is characterized by high order degree of 0.7-0.9, rhombic crystal, high magnesium, high calcium and high iron. The micritic calcite belongs to primary origin on the basis of the carbon and oxygen isotopic compositions and the fractionation characteristics of rare earth elements. According to the oxygen isotopic fractionation equation between paragenetic dolomite and calcite, it is calculated that the formation temperature of dolomite in the shale is between 36.76-45.83 ℃, belonging to lacustrine low-temperature dolomite. Based on the maturation and growth mechanism of primary and penecontemporaneous dolomite crystals, a dolomite diagenetic sequence and the dolomitization process are proposed, which is corresponding to the diagenetic environment of Shahejie Formation shale in the study area. 展开更多
关键词 jiyang Depression lower Sha3 Member upper Sha 4 Member organic shale dolomite isotope fractionation rare earth element diagenetic evolution
下载PDF
Permeability damage micro-mechanisms and stimulation of low-permeability sandstone reservoirs: A case study from Jiyang Depression, Bohai Bay Basin, China 被引量:2
10
作者 ZHANG Shoupeng FANG Zhengwei 《Petroleum Exploration and Development》 2020年第2期374-382,共9页
According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separati... According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test. 展开更多
关键词 jiyang Depression low permeability sandstone permeability damage structural element DISSOLUTION separation reservoir stimulation increasing production and injection
下载PDF
Carboniferous–Permian marine transgressions in the Jiyang Depression 被引量:1
11
作者 Zhang Kuihua Chen Shiyue Zhang Guanlong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期87-92,共6页
In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling,... In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling, outcrops and carbonate acid-insoluble residue experiments together with the tectonic evo- lutionary history of the peripheral orogenic zones of the North China plate and the Tan-Lu fault zones. The .';tudy concludes that marine transgressions took place on six occasions during Carboniferous-Perm- ian time in the Jiyang Depression. The marine transgressions were concentrated in the Late Carbonifer- ous: two marine transgressions occurred in the early Late Carboniferous, and the scale of the first was smaller and the time was shorter than those of the second. The other four marine transgressions hap- pened in the late Late Carboniferous, the first and the fourth of which were larger in scale and longer in time than the second and the third. The seawater came from the Jiaobei area, the eastward part of the Qinling-Dabie residual sea basin, and invaded progressively as a planar flow from south to north and from east to west. These findings have great significance for thorough analysis of the sedimentary characteristics and evolution of the Carboniferous-Permian strata in the livang Denression. 展开更多
关键词 Carboniferous-PermianMarine transgression North China plate Tan-Lu fault zone jiyang Depression
下载PDF
Evolution of Authigenic Minerals and Porosity in the Deep Formation of Paleogene of Jiyang Sub-basin
12
作者 Jing Yuan College of Geoscience and Information,China University of Petroleum,Qingdao 266555,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期142-143,共2页
The clastic rocks in the depth of 2800-6000 m of the Paleogene in Jiyang sub-basin had undergone the middle diagenesis and late diagenesis.The reservoirs in main areas of the sub-basin developed 2-6 secondary pores zo... The clastic rocks in the depth of 2800-6000 m of the Paleogene in Jiyang sub-basin had undergone the middle diagenesis and late diagenesis.The reservoirs in main areas of the sub-basin developed 2-6 secondary pores zones.The reservoirs in the stage A of middle diagenesis of Bonan fault zone in Zhanhua depression and of the gentle slope belt of Chezhen depression are controlled by the acidic diagenetic medium and developed one secondary pores zone in each diagenetic sub-stage respectively.The contents ofautogenic quartz,pyrite and kaolinite are quite high in these reservoirs.The reservoirs’ 展开更多
关键词 AUTHIGENIC minerals secondary pores POROSITY EVOLUTION DIAGENETIC medium DEEP formation jiyang sub-basin
下载PDF
Genetic types and geochemicai characteristics of natural gases in the Jiyang Depression,China
13
作者 Wen-Tao Li Yang Gao Chun-Yan Geng 《Petroleum Science》 SCIE CAS CSCD 2015年第1期81-95,共15页
Natural gases were widely distributed in the Jiyang Depression with complicated component composition, and it is difficult to identify their genesis. Based on investigation of gas composition, carbon isotope ratios, l... Natural gases were widely distributed in the Jiyang Depression with complicated component composition, and it is difficult to identify their genesis. Based on investigation of gas composition, carbon isotope ratios, light hydrocarbon properties, as well as geological analysis, natural gases in the Jiyang Depression are classified into two types, one is organic gas and the other is abiogenic gas. Abiogenic gas is mainly magmatogenic or mantlederived CO2. Organic gases are further divided into coaltype gas, oil-type gas, and biogas according to their kero- gen types and formation mechanisms. The oil-type gases are divided into mature oil-type gas (oil-associated gas) and highly mature oil-type gas. The highly mature oil-type gases can be subdivided into oil-cracking gas and kerogen thermal degradation gas. Identification factors for each kind of hydrocarbon gas were summarized. Based on genesis analysis results, the genetic types of gases buried in different depths were discussed. Results showed that shallow gases (〈1,500 m) are mainly mature oil-type gases, biogas, or secondary gases. Secondary gases are rich in methane because of chromatographic separation during migration and secondary biodegradation. Secondary biodegradation leads to richness of heavy carbon isotope ratios in methane and propane. Genesis of middle depth gases (1,500-3,500 m) is dominated by mature oil-type gases.Deep gases (3,500-5,500 m) are mainly kerogen thermal degradation gas, oil-cracking gas, and coal-type gas. 展开更多
关键词 Genetic types Natural gases jiyang Depression Light hydrocarbon properties Carbon isotope ratios Identification factors
下载PDF
Structural characteristics of continental carbonate-rich shale and shale oil movability: A case study of the Paleogene Shahejie Formation shale in Jiyang Depression, Bohai Bay Basin, China
14
作者 LIU Huimin BAO Youshu +9 位作者 ZHANG Shouchun LI Zheng LI Junliang WANG Xuejun WU Lianbo WANG Yong WANG Weiqing ZHU Rifang ZHANG Shun WANG Xin 《Petroleum Exploration and Development》 SCIE 2023年第6期1320-1332,共13页
Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formatio... Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages. 展开更多
关键词 shale oil carbonate-rich shale shale fabric storage-seepage structure shale oil movability Paleogene Shahejie Formation jiyang Depression Bohai Bay Basin
下载PDF
Study on the base-level cycle and the sedimentology of Permian in Jiyang area
15
作者 LI Zeng-xue HAN Mei-lian +1 位作者 SONG Ming-shui LU Da-wei 《Journal of Coal Science & Engineering(China)》 2009年第1期7-15,共9页
The identification of sequence boundaries is the key point for sequence stratigraphic classification. Both the higher-order sequences and the units within the sequences are bounded with the key sediments or isochronou... The identification of sequence boundaries is the key point for sequence stratigraphic classification. Both the higher-order sequences and the units within the sequences are bounded with the key sediments or isochronous surfaces. Eight sequences can be divided in the whole Permo-Carboniferous strata (the Shiqianfeng Formation is not included), which is from the Benxi Formation, Taiyuan Formation, Shanxi Formation, Xiashihezi Formation, Wanshan Section, and Kuishan Section to the Xiaofuhe Section. Also, different system tracts (Iowstand system tract, transgression system tract and highstand system tract) and some parasequences can be recognized in each sequence. Parasequence analysis was on the basis of the division of the base-level cycle. The base-level cycle was mainly identified according to the change of the water area, which was reflected by the depositional sequence. The physical characteristic of the strata was reflected by the well log. It was supplied by the test of the minerals and rocks and the analysis of the micro-element in the lab. The paleogeographic characteristic of the Iowstand system tract in the sequence Ⅵ is that the east-north part takes the river system as its feature; the south part is the lake system, the river channel spreads from north to south, and the area of the flooding plain is great. The paleogeographic characteristic of the water-transgressive system tract is that the range of the lake in the south extended distinctively, the range of the river channel in the east reduced. The coastal shallow lake deposit is the main characteristic in the water-transgressive system tract. The paleogeographic characteristic of the highstand system tract is similar to the one of the Iowstand system tract. 展开更多
关键词 jiyang area base-level PARASEQUENCE the reservoir of the coal-derived gas
下载PDF
Pore throat structure and classification of Paleogene tight reservoirs in Jiyang depression,Bohai Bay Basin,China
16
作者 WANG Yongshi GAO Yang FANG Zhengwei 《Petroleum Exploration and Development》 CSCD 2021年第2期308-322,共15页
The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection... The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection and micro CT scanning data,and a reservoir classification scheme based on pore throat structure parameters is established.The material composition and structural characteristics of tight reservoirs are analyzed by casting thin section data.The pore throat structure characteristics of tight reservoirs are studied by conventional mercury injection,constant rate mercury injection and micro CT scanning.Ten pore throat structure parameters are analyzed by cluster analysis.Based on the classification results and oil test results,the classification scheme of Paleogene tight reservoirs is established.The Paleogene tight reservoirs in the Jiyang depression have the characteristics of macropores and microthroats,with pores in micron scale,throats in nano-submicron scale,and wide variation of ratio of pore radius to throat radius.The permeability of the tight reservoir is controlled by throat radius,the smaller the difference between pore radius and throat radius,and the more uniform the pore throat size,the higher the permeability will be.The lower limits of average pore throat radius for the tight sandstone and tight sandy conglomerate to produce industrial oil flow without fracturing are 0.6μm and 0.8μm,respectively.Reservoirs that can produce industrial oil flow only after fracturing have an average pore-throat radius between 0.2-0.6μm,and reservoirs with average pore throat radius less than 0.2μm are ineffective reservoirs under the current fracturing techniques.Different types of tight sandstone and sandy conglomerate reservoirs are classified and evaluated,which are well applied in exploratory evaluation. 展开更多
关键词 pore throat structure tight reservoir reservoir evaluation PALEOGENE jiyang Depression Bohai Bay Basin
下载PDF
A STRATIGRAPHIC UNCONFORMITY SURFACE BETWEEN THE NEOGENE AND THE PALEOGENE IN THE JIYANG DEPRESSION,BOHAI BAY BASIN, EASTERN CHINA:GEOLOGIC CHARACTERISTICS, FORMATIONPROCESS AND GEODYNAMIC ORIGIN
17
作者 Shi Buqing Wu Zhiping and Zhou Yaoqi(Petroleum Resource and Environmental Geolog Research Institute, PetroleumUniversity, Dongying, Shandong 257062, P. R. China ) 《Geotectonica et Metallogenia》 1998年第Z2期143-152,共10页
Regional stratigraphic unconformity surfaces are commonly observed in both orogenic beltsand sedimentary basins. They have superficially simple features, but in fact contain abundant geo-logic and geodynamic in format... Regional stratigraphic unconformity surfaces are commonly observed in both orogenic beltsand sedimentary basins. They have superficially simple features, but in fact contain abundant geo-logic and geodynamic in formation on basin evolution, which was rarely systematically studied.Based on the elaborate research on geologic characteristics of the stratigraphic unconformity sur-face between the Neogene and the Paleogene in the Jiyang depression, Bohai Bay basin, EasternChina, this paper reconstructed its formation process and paleotopography in the late Oligocene. ltis the most interesting that this stratigraphic uncon formity surface represents the transiton of theJiyang depression evolution from rifting extension to thermal down-warping and also implies an u-plift process during the transition. This paper thought it worthy to study the origin of thisstratigraphic uncohformity surface and its relation to the stage transition of basin evolution. ThenpossibIe influences of regional stress field and deep dynamic process variations on the stratigraphicunconforrnity surface formation were anaIyzed. The stratigraphic unconformity surface betweenthe Neogene and the Paleogene in the Jiyang depression should be the direct result of extremestretching of llthosphere and diapirism of hot upper mantle, which can also possibly explain the co-incidence of the unconformity surface formation with the stage transition of basin evolution. Fur-thermore. the influences of the stratigraphic unconformity surface formation on oil and gas accu-mulation, the erosion amount calculation, and the elaborate time structure recorded by thestratigraphic unconformity surface were discussed. 展开更多
关键词 STRATIGRAPHIC UNCONFORMITY surface GEOLOGIC feature jiyang depression FORMATION process Dongying movement GEODYNAMIC ORIGIN
下载PDF
Hydrocarbon Generation Potential Evaluation of Coal Shale Gas of Permo-Carboniferous in Jiyang Depression
18
作者 Pingping Li Dawei Lv +2 位作者 Huiyong Wang Wengui Fan Changyong Lu 《Journal of Geological Research》 2019年第2期1-8,共8页
In order to study the hydrocarbon-generating potential of Carboniferous-Permian coal shale in Jiyang Depression,geochemistry,petroleum geology and coal geology were applied to study the residual strata distribution of... In order to study the hydrocarbon-generating potential of Carboniferous-Permian coal shale in Jiyang Depression,geochemistry,petroleum geology and coal geology were applied to study the residual strata distribution of Carboniferous-Permian in Jiyang Depression,organic matter abundance,organic matter types and organic matter maturity of mudstone.The results show that the thickness of the Carboniferous-Permian residual strata in Jiyang Depression is generally 200-800 m,with a maximum thickness of 900 m;the organic matter abundance of coal-bearing shale is good,and it is type III kerogen,which is conducive to gas generation,and the maturity of organic matter reaches a mature-higher maturity stage;the hydrocarbon generation potential of Benxi Formation and Taiyuan Formation is better;Medium to good hydrocarbon source rocks is able to be found in every sag of Shanxi Formation hydrocarbon source rocks,but the scope is limited,and the overall evaluation is still medium.Generally speaking,the Permo-Carboniferous coal-bearing shale in Jiyang Depression has certain shale gas exploration potential. 展开更多
关键词 jiyang depression PERMO-CARBONIFEROUS Shale gas Hydrocarbon generation potential Organic matter abundance
下载PDF
Geochemistry and origin of gas pools in the Gaoqing-Pingnan fault zone, Jiyang Depression 被引量:1
19
作者 SHEN Baojian HUANG Zhilong +3 位作者 LIU Hongwen XU Cheng YAN Zaifei CHEN Mi 《Chinese Journal Of Geochemistry》 EI CAS 2007年第4期446-454,共9页
In the surroundings of the Gaoqing-Pingnan fault zone are developed quite a number of gas reservoirs. Based on gas compositions, they can be divided into two groups, i.e., CO2 and CH4. Their composition and isotope ge... In the surroundings of the Gaoqing-Pingnan fault zone are developed quite a number of gas reservoirs. Based on gas compositions, they can be divided into two groups, i.e., CO2 and CH4. Their composition and isotope geochemistry were dealt with in this study. The CO2 contents range from 60.72%–99.99%, the δ13CCO2 values from -3.41‰– -9.8‰, and the 3He/4He ratios from 4.35×10-6–6.35×10-6 (i.e. R/Ra=4.45–4.35). Based on the data on composition and isotope geochemistry, deep geological background, deep faults and volcanic rocks, it is shown that CO2 ,distributed in the Gaoqing area, mostly originated from mantle-source inorganic matter which is associated with magmatic rocks. The favorable tectonic environment for the formation of CO2 reservoirs is the rift, which is related to great fault-magmatic activity, the formation of CO2 gas pools and their space-time correlation to the most recent magmatic activities. Hydrocarbon gas pools occur in the Huagou area. The CH4 contents are within the range of 88.83%–99.12%, and the δ13CCH4 values, -44.7‰– -54.39‰. This indicates that the hydrocarbon gas resulted from the decomposition of oil-type gas at high temperatures. Volcanic rocks in the CO2 gas pool-and CH4 gas pool-distributed areas show significant differences in Fe2O3 and FeO contents. This has proven that the hydrocarbon gas may have resulted from various chemical reactions. Magmatic activities are the primary reason for the distribution of CO2 and CH4 gas pools in the Gaoqing-Pingnan fault zone. 展开更多
关键词 气藏 地球化学 岩浆熔蚀 洼地
下载PDF
Thermal-rheological structure of the lithosphere beneath Jiyang Depression:Its implications for geodynamics 被引量:10
20
作者 LIU Shaowen1,2, WANG Liangshu2, GONG Yuling2, LI Cheng2, LI Hua2 & HAN Yongbing2 1. Department of Urban and Resources, Nanjing University, Nanjing 210093, China 2. Department of Earth Sciences, Nanjing University, Nanjing 210093, China 《Science China Earth Sciences》 SCIE EI CAS 2005年第10期1569-1584,共16页
Jiyang Depression, located in the southeast Bohai Bay Basin, has the geomorpho-logic framework of multiple uplifts intervening with sags. Combined the abundant geo-temperature data and thermo-physical parameters of ro... Jiyang Depression, located in the southeast Bohai Bay Basin, has the geomorpho-logic framework of multiple uplifts intervening with sags. Combined the abundant geo-temperature data and thermo-physical parameters of rock samples derived from oil and gas exploration during the past years, with geothermal approaches, here we investigate the litho-spheric thermal regime of this depression. Consequently, based on the obtained thermal struc-ture of the lithosphere, along with rheological modeling, the lithospheric rheological profiles of Jiyang Depression are then determined. Our results show that the temperature at the bottom of sedimentary cover within depression varies from 129℃ to 298 ℃ , accompanied with the base-ment heat flow ranging between 54.3 and 60.5 mW/m2; and 406℃-436℃ for temperature at the bottom of the upper crust, along with heat flow varying from 47.7 to 52.6 mW/m2; while the tem-perature at the bottom of the middle crust is between 537 ℃ and 572 ℃, as well as heat flow ranging from 41.3 to 56.3 mW/m2. The temperature at Moho ranges from 669 ℃ to 721 ℃, the heat flow derived from mantle is between 38.1 and 43.1 mW/m2, and calculated thickness of the thermal lithosphere beneath depression varies from 71 to 90 km. Lithospheric thermal regime is a close correlation with such factors as crustal thickness and surface heat flow, etc. Usually, the larger the surface heat flow, the larger the deep temperature and heat flow within lithosphere, and the thinner the thermal lithospheric thickness. This high thermal regime of the lithosphere in Jiyang Depression is thought to be related to Cenozoic back-arc spreading during the western Pacific plate subduction into Eurasian continent. Lithospheric rheological modeling shows that the lithosphere in Jiyang Depression is characterized by its distinct rheological stratification as follows: The upper and most part of the middle crust are of brittle, while the lower crust and the lower part of middle crust are all ductile, and lithospheric mantle is dominated by the ductile layer. Additionally, lateral rheological heterogeneities exist in the depression, and the lithospheric strength of sags within depression differs much from each other. The total lithospheric strength of Jiyang Depression is between 1.52 and 2.16×1012 N/m, effective elastic thickness (Te) of the lithosphere in Jiyang Depression is about 24 km, approximating to the thickness of mechanically strong crust (MSC). We suggested that the dehydration of minerals in the subducting zone, along with upwelling of hot materials in the mantle wedge during subduction and back-arc spreading, results in the partial melting at the bottom of curst, which triggers magma intrusion and under-plating. This geodynamics process maybe is the reason for the reduction of lower crustal viscos-ity for ductile flow. Lithospheric rheological stratification controlling the differential deformation styles of brittle fracture or frictional slide in the upper crust and ductile flow in the middle and lower crust, accounts for the basin formation and evolution of Jiyang Depression during Ceno-zoic. 展开更多
关键词 jiyang Depression geothermics rheology effective elastic thickness geodynamics.
原文传递
上一页 1 2 56 下一页 到第
使用帮助 返回顶部