Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formatio...Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.展开更多
To determine the occurrence mechanism and mobility of shale oil in the Shahejie Formation in the Jiyang Depression, organic geochemistry analysis, thin-section petrological observation, low-temperature nitrogen adsorp...To determine the occurrence mechanism and mobility of shale oil in the Shahejie Formation in the Jiyang Depression, organic geochemistry analysis, thin-section petrological observation, low-temperature nitrogen adsorption, high-pressure mercury intrusion porosimetry, field emission scanning electron microscopy experiments were conducted on shale samples to reveal its storage mechanism, including pore size, ratio of adsorbed oil to free oil, mobility and its influencing factors, and mode of storage. Residual shale oil is mainly present in pores less than 100 nm in diameter under the atmospheric temperature and pressure. The lower limit of pore size for free oil is 5 nm, and the lower limit of pore size for movable oil occurrence is about 30 nm. The light components, low TOC and high porosity are the main factors contributing to the high proportion of movable oil. Each type of pore can contain residual shale oil, but not all pores have shale oil. Pore connectivity and surface wettability are the determinants of shale oil enrichment degree and enrichment state.展开更多
The stable carbon isotope compositions (δ13C) of individual aromatic hydrocarbons have been analyzed in sulfur-rich and sulfur-lean crude oils from the Huanghekou Depression, Bohai Bay Basin. The δ13C values of indi...The stable carbon isotope compositions (δ13C) of individual aromatic hydrocarbons have been analyzed in sulfur-rich and sulfur-lean crude oils from the Huanghekou Depression, Bohai Bay Basin. The δ13C values of individual aromatic hydrocarbons, including alkylbenzenes, alkylnaphthalenes, alkylphenanthrenes, alkylfluorenes and alkyldibenzothiophenes, are reported. The main aims are to find out the origin of these oils and their relationship to paleoclimate. The distribution of aromatic hydrocarbons and maturity parameters show the oils all stay in the low-mature to mature stage. Meanwhile, aromatic hydrocarbons are mainly derived from the diagenetic/catagenetic origin. The δ13C values for 1,2,4-trimethylbenzene (−30.7‰ to −28.8‰) and 1,2,3,4-tetramethylbenzene (−32.4‰ to −26.3‰) indicate the algae-derived organic matter for alkylbenzenes. Some isomers, such as 1,7-+1,3-+1,6-dimethylnaphthalene, 1,2,5-trimethylnaphthalene, 1,2,5,6-+1,2,3,5-tetramethylnaphthalene, 1,10-+1,3-+3,10-+3,9-dimethylphenanthrenes, 1,6-+2,9-+2,5-dimethylphenanthrenes and 4,9-+4,10-+1,9- dimethylphenanthrenes show isotopic depletion (−34.9‰ to −25.2‰), indicating the major contribution of algae for these compounds. Meanwhile, isotopically depleted (−33.6‰ to −26.7‰) alkyldibenzothiophenes represent the algae input. δ13C values for mainly algae-derived naphthalene to trimethylnaphthalenes of sulfur-rich oils are more enriched than those of sulfur-lean oil, with the most significant difference of 4.4‰, indicating that the aridity of the environment and stratified water column result in the enrichment in 13C.展开更多
The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection...The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection and micro CT scanning data,and a reservoir classification scheme based on pore throat structure parameters is established.The material composition and structural characteristics of tight reservoirs are analyzed by casting thin section data.The pore throat structure characteristics of tight reservoirs are studied by conventional mercury injection,constant rate mercury injection and micro CT scanning.Ten pore throat structure parameters are analyzed by cluster analysis.Based on the classification results and oil test results,the classification scheme of Paleogene tight reservoirs is established.The Paleogene tight reservoirs in the Jiyang depression have the characteristics of macropores and microthroats,with pores in micron scale,throats in nano-submicron scale,and wide variation of ratio of pore radius to throat radius.The permeability of the tight reservoir is controlled by throat radius,the smaller the difference between pore radius and throat radius,and the more uniform the pore throat size,the higher the permeability will be.The lower limits of average pore throat radius for the tight sandstone and tight sandy conglomerate to produce industrial oil flow without fracturing are 0.6μm and 0.8μm,respectively.Reservoirs that can produce industrial oil flow only after fracturing have an average pore-throat radius between 0.2-0.6μm,and reservoirs with average pore throat radius less than 0.2μm are ineffective reservoirs under the current fracturing techniques.Different types of tight sandstone and sandy conglomerate reservoirs are classified and evaluated,which are well applied in exploratory evaluation.展开更多
Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon...Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.展开更多
The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geolog...The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geological structures and hydrocarbon enrichment of the depressions in the Bohai Bay Basin. Based on the Paleogene strata distribution and the length to width ratio of different depressions, their geological structures are divided into three types in plan-view: open(length/width 〈 2), narrow(length/width 〉 4) and transitional types(length/width 2-4). In cross section, the geological structures can be divided into dustpan I, dustpan II and double-faulted types. Based on tectonic evolution and sedimentary characteristics, the depressions are classified into early-formed, inherited and late-formed categories. Generally, narrow depressions are mainly located in the northeast and southwest of the Bohai Bay Basin, while open depressions are dominantly distributed in the central area of the basin; late-formed depressions are mainly around the Bohai sea area, and early-formed depressions are mostly located in the periphery of the basin. Geological structures of the depressions control the formation of the source, reservoir and cap rocks as well as hydrocarbon accumulation setting, and further influence the pay zones and oil-bearing sequence. In detail, dustpan II and doublefaulted depressions mainly have A-type sags, which often possess better hydrocarbon generation conditions than dustpan I ones; hydrocarbons in open dustpan II depressions tend to accumulate in the central uplift areas or buried hill, while those in narrow dustpan I depressions always accumulate in gentle slope belts. The oil-bearing sequence for different evolutional depressions corresponds well with the sedimentary strata of the main development stages of depressions. In early-formed depressions, hydrocarbons are mainly enriched in deeply buried reservoirs, while in late-formed depressions hydrocarbons are abundant in the relatively shallow traps. In summary, most inherited and late-formed dustpan II depressions are enriched in hydrocarbons due to their extensive source rocks and good source-reservoir-seal assemblages, whereas dustpan I and early-formed depressions are relatively poor in hydrocarbons.展开更多
The third member of Shahejie Formation (Sha-3 member; 42–38Ma of Eocene) in the Bozhong Depression, offshore Bohai Bay Basin was subject to multiple post-depositional modifications. The present structural framework...The third member of Shahejie Formation (Sha-3 member; 42–38Ma of Eocene) in the Bozhong Depression, offshore Bohai Bay Basin was subject to multiple post-depositional modifications. The present structural framework of the Bozhong Depression, which is characterized by sags alternating with uplifts, does not reflect its original sedimentary pattern. Previous studies have not discussed the post-depositional modification of this succession, including the sedimentary pattern variations and the depositional geodynamic setting. This work determined the characteristics of the post-depositional modification and original sedimentary pattern of the Bozhong Depression through analysis of seismic data, well-log data and fission-track ages. The results demonstrate that the Shijiutuo rise, a major structural feature of the current basin, did not exist during the major depositional stage of the Sha-3 member, when the Qinnan sag was largely connected to the Bozhong sag to form a single contiguous deposition area within the basin. By contrast, the Shaleitian and Chengbei rises, located in the western part of the Bozhong Depression, have existed before the depositional period of the Eocene Sha-3 member; these features were manifested as syn-depositional tilted fault blocks, the uplifted footwall blocks of which provided sediments for the neighboring Shanan and Chengbei sags. The western part of the Bonan low rise, located in the southern part of the Bozhong Depression, did not experience uplifting during the depositional phase of the Eocene Sha-3 member. The Huanghekou sag was connected with the Bozhong sag in the western part of the Bozhong Depression. The original sedimentary boundary of the southern Miaoxi sag possibly extended eastward about 10 km and connected with the Bozhong sag at its northern part. The present-day Bodong low rise, which is bounded by the Tan–Lu fault zone, also formed after the depositional period of Eocene Sha-3 member. It is thus concluded that the Bozhong Depression formed a connected large-scale sub-basin during the depositional stage of the Eocene Sha-3 member. Several neighboring sags that are now separated by rises, including the Qinnan, Shanan, Chengbei, Huanghekou, Miaoxi and Bodong sags, formed a single contiguous depositional area during the Eocene. The significant differences between the present and original basin patter and framework provide valuable information for better understanding the history of basin inversion and its impact on related hydrocarbon-system evolution.展开更多
Compared with marine facies shale strata,lacustrine shale strata are more complicated in geological conditions,and thus more difficult to explore and develop.To realize economic exploration and development of lacustri...Compared with marine facies shale strata,lacustrine shale strata are more complicated in geological conditions,and thus more difficult to explore and develop.To realize economic exploration and development of lacustrine shale oil,the geological regularities of accumulation and high yield of retained movable petroleum in shale should be understood first.In this work,taking the shale strata of Kong 2 Member and Sha 3 Member in the Paleogene of Huanghua depression in the Bohai Bay Basin as examples,based on the previous joint analysis results of over ten thousand core samples and the latest oil testing,production test and geochemical data of more than 30 horizontal wells,accumulation conditions and models of retained movable petroleum in lacustrine shale were studied comprehensively.The study shows that at moderate organic matter abundance(with TOC from 2%to 4%),shale strata have the best match between oil content and brittleness,and thus are rich in oil and good in fracability.Moderate ancient lake basin size and moderate sediment supply intensity are the internal factors leading to best coupling of organic matter abundance and brittle mineral content in the shale formation.Moderate thermal evolution maturity of Ro of 0.7%–1.0%(at burial depth of 3200 to 4300 m)is the interval where oil generation from thermal evolution and oil adsorption by kerogen in shale layers match best,and retained movable petroleum is high in proportion.Moderate diagenetic evolution stage(3200 to 4300 m in the middle diagenetic stage A)is conducive to the formation of a large number of dissolved pores and organic matter pores,which provide storage space for shale oil enrichment.Moderate development degree of natural fractures(without damaging the shale oil roof and floor sealing conditions)is conducive to the storage,seepage and preservation of shale oil.The research results have overthrown the general understanding that high organic matter abundance,high maturity,and high development degree of natural fractures are conducive to shale oil enrichment,and have guided the comprehensive evaluation of shale oil and gas sweet spots and well deployment in the second member of the Kongdian Formation in the Cangdong sag and the Shahejie Formation in the Qikou sag.Industrial development of the shale oil in Kong 2 Member of the Cangdong sag has made major breakthrough,and important signs of shale oil have been found in Sha 3 Member of the Qikou sag,demonstrating huge exploration potential of lacustrine shale oil.展开更多
The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depr...The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.展开更多
Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derive...Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derived from the Upper Paleozoic coal source rock, the petroleum reservoir is an inner buried-hill primary oil and gas accumulation, showing a good prospect of the Paleozoic inner buried-hill primary reservoir exploration. The formation and accumulation of the primary petroleum reservoir in the Wumaying inner buried-hill are discussed by studying the primary source conditions, the inner buried-hill reservoir-cap combinations and the hydrocarbon accumulation period. The primary petroleum reservoir has three preponderant characteristics of accumulation: secondary large-scale gas generation of coal source rock, multi reservoir-cap combinations and mainly late hydrocarbon charging, which formed the compound hydrocarbon accumulation of the above-source sandstone and under-source carbonate rock in the Paleozoic inner buried-hill. Along with the Mesozoic and Cenozoic tectonic activities, the formation of the primary reservoir in Wumaying inner buried-hill is characterized by "mixed oil and gas charge in local parts in early stage, adjustment accumulation due to structural high migration in middle stage, and large-scale natural gas charge and compound accumulation in late stage".展开更多
Deciphering hydrocarbon generation and accumulation stage is of significance to understand oil and gas evolution and seek exploration targets.Taking the Upper Paleozoic buried-hills in the Huanghua Depression,Bohai Ba...Deciphering hydrocarbon generation and accumulation stage is of significance to understand oil and gas evolution and seek exploration targets.Taking the Upper Paleozoic buried-hills in the Huanghua Depression,Bohai Bay Basin,as a case study,hydrocarbon generation environment and detailed accumulation process are revealed by fluid inclusions observations,Laser Raman spectroscopy,Fourier Infrared spectroscopy,and K-Ar isotope measurements.The results show that both oil and gas inclusion were captured in the quartz overgrowth,dissolved feldspar and calcite microfractures,showing blue to dark brown fluoresce.The grains containing oil inclusions index(GOI)of oil,oil&gas and gas being 25%,65%,and 10%and the inclusions with abundant methyl groups and short chains,both indicate high thermal maturity.One series of fluids inclusion is generally observed,evidenced by the concentrated homogenization temperature of 135-145℃ and salinity of 3%-15 w.t.%NaCl equiv,indicating one primary charging stage.The gas and gas&liquid inclusions mainly contain CH_(4),with also peaks indicating CO_(2) and N_(2.)The Carboniferous and Permian biomarkers show reducing environment with brackish water,with organic matter sources both from marine and continental.The relative content ofααα20RC_(27),ααα20RC_(28),andααα20RC_(29) exhibit source contributions both from algae and higher plants,and mainly of II2 to III kerogen.Both coal derived gas and oil associated hydrocarbons are identified from most of the buried-hills.Combining the fluid homogenization temperature and salinity,as well as the thermal evolution history,the hydrocarbon generated from the Upper Paleozoic was concentrated at the end of the Eocene(40 Ma±),while the beginning of charging is 60 Ma±.The Wumaying Buried-hill is of only coal derived gas and has potential for inner coal measure natural gas exploration.The results provide a detailed understanding of hydrocarbon accumulations in the study area,which can also be reference for improving petroleum exploration efficiency in similar basins.展开更多
Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by usi...Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by using rock pyrolysis, TOC (total organic carbon), XRD (X-ray diffraction), SEM (scanning electron microscope), FE-SEM (field emission scanning electron microscope), high pressure mercury intrusion, and low pressure N2 and CO2 gas adsorption experiments, in aim to reveal their reservoir features. The results show that: (1) the width of micro-pores of all the studied samples mainly ranges from 0.45 to 0.7 nm indicated by CO2 isotherms, and the width of meso-pores is less than 10 nm, with type IV adsorption isotherms and type H2 hysteresis loop, indicative of "ink-bottle"-shaped pores. Good correlations exist among pore volume, surface area and averaged pore diameter, and a good positive correlation exists between micro-pore volume and TOC content; however, there is no obvious correlation between meso-pore volume and TOC content; (2) interparticle pores, pores among the edge of mineral grains and organic matter pores were all identified in marine and lacustrine shale, among which the interparticle pores may be influence by dissolution effect. Not all bitumen develops organic matter pore, and only high to over mature bitumen present pores. Now the description methods of micrometer scale pores developed in shale are very lack. Micro- fractures developed in Jiyang depression and dissolution interparticle pores developed in Songliao Basin should be the accumulation sites for shale oil in lacustrine shale, and can be as sweet spots.展开更多
Geochemical studies of crude oil and source rock play an important role in future exploration in Zhanhua Depression.In this study,thirty-one oil samples collected from Shahejie Formation in Zhanhua Depression,Bohai Ba...Geochemical studies of crude oil and source rock play an important role in future exploration in Zhanhua Depression.In this study,thirty-one oil samples collected from Shahejie Formation in Zhanhua Depression,Bohai Bay Basin,NE China have been geochemically analyzed and their organic geochemical characteristics have been applied to differentiate groups of oils.These oil samples can be classified into two families based on multiple biomarker proxies and stable carbon isotopic values.FamilyⅠis characterized by a low ratio of pristane over phytane(Pr/Ph<0.7),a relatively high ratio of phytane over n-C18(Ph/n-C18),varying ratios of gammacerane over C30 hopane(Ga/C30H)and C22/C21 tricyclic terpane,and a low ratio of C19/C23 tricyclic terpane.FamilyⅡis marked by a relatively high Pr/Ph ratio(0.7-1.6),relative low ratios of Ph/n-C18 and C22/C21 tricyclic terpane,and avarying ratio of C19/C23 tricyclic terpane.Both familiesⅠandⅡwithin these crude oils can be subdivided into two families based on different values of stable carbon isotopic composition of individual n-alkanes.Moreover,the potential source rocks of oil samples in FamilyⅠand FamilyⅡwere likely derived from the upper Es4 member and Es3 member,respectively,based on the correlation of organic geochemical characteristics of the oils and source rocks.The results of oil-source rock correlation provide insight into the process from oil generation to migration and to final accumulation,providing a better understanding of factors controlling oil-gas distribution for prediction of sweet spots.展开更多
Huanghua depression,in the middle of Bohai Bay basin,is a major secondary sedimentary and petroliferous unit.Although this basin has been explored for nearly 50 years,the discovery of new reservoirs increased quickly ...Huanghua depression,in the middle of Bohai Bay basin,is a major secondary sedimentary and petroliferous unit.Although this basin has been explored for nearly 50 years,the discovery of new reservoirs increased quickly in recent years.The subduction of the Pacific Plate to the Eurasia Plate caused the transtensional deformation of the whole basin.During the Paleogene,the depocenters and subsidence centers展开更多
The deep buried clastic formation of Paleogene is an important hydrocarbon reservoir in the Chezhen depression.There are two types of diagenetic alteration modes in it.The first mode is weak compaction, strong cementa...The deep buried clastic formation of Paleogene is an important hydrocarbon reservoir in the Chezhen depression.There are two types of diagenetic alteration modes in it.The first mode is weak compaction, strong cementation,fracturing and weak dissolution in the sandstone and conglomerate on the steep slope of the depression.The reservoirs are cemented mainly by carbonate minerals strongly。展开更多
Enrichment of hydrocarbon reservoir relates to the slope break types in continental basin(sag)in China. Division and analysis of genetic types of slope break will help to study the enrichment regularity of hydrocarbon...Enrichment of hydrocarbon reservoir relates to the slope break types in continental basin(sag)in China. Division and analysis of genetic types of slope break will help to study the enrichment regularity of hydrocarbon reservoir and is conducive to the guiding of future development in exploration and enhancing prediction accuracy.This paper,guided by the theory of sequence stratigraphy and using high-resolution three-dimensional seismic data,drilling and other information,takes into account the characteristics展开更多
The Dongpu Depression is a secondary salt-bearing tectonic unit in the Bohai Bay Basin,eastern China.The depositional environment of this depression regarding its Paleogene strata is clearly different in plane,includi...The Dongpu Depression is a secondary salt-bearing tectonic unit in the Bohai Bay Basin,eastern China.The depositional environment of this depression regarding its Paleogene strata is clearly different in plane,including the saltwater environment(SE)in the north,the freshwater environment(FE)in the south and the brackish water environment(BE)in the middle.The result of oil and gas exploration in the Dongpu Depression shows that more than 90%of the proven oil reserves are distributed in the northern saltwater environment.Previous studies indicate that the organic geochemistry characteristics and the hydrocarbon generation capacity of the source rocks are very clearly diverse under different environments,which results in the significant differences in the proved reserves between the north and the south.In order to further explore the differences in the hydrocarbon generation capacity of the source rocks under distinct depositional environments and the mechanism of their occurrence,three samples from different depositional environments(W18-5 for SE,H7-18 for BE,CH9 for FE)were used for confined gold tube pyrolysis experiments.The results show that the CH4 yields of W18-5,H7-18 and CH9 increase with increasing temperature,the maximum yields being 405.62 mg/g TOC,388.56 mg/g TOC and 367.89 mg/g TOC,respectively.The liquid hydrocarbon yields of W18-5,H7-18 and CH9 firstly increase with increasing temperature and then decrease after the critical temperatures.The maximum yields of C6-14 are 149.54 mg/g TOC,140.18 mg/g TOC and 116.94 mg/g TOC,the maximum yields of C14+being 852.4 mg/g TOC,652.6 mg/g TOC and 596.41 mg/g TOC,respectively for W18-5,H7-18 and CH9.To summarize,the order of hydrocarbon potential from high to low is W18-5,H7-18 and CH9.On this basis,through analyzing the influencing factors of hydrocarbon differences,this paper reveals that the saltwater environment is characterized by 4 factors:higher salinity,halophilic algae,high paleo-productivity and a strongly reducing environment,which are beneficial to the enrichment of organic matter and lead to the formation of high levels of sapropelite and exinite.According to the variation of oil and gas components in the pyrolysis experiments,the hydrocarbon generation process is divided into three stages:kerogen cracking,oil cracking and C2-5 cracking.Combined with hydrocarbon generation characteristics and stages,the evolutionary model of hydrocarbon generation for source rocks under different environments is established.展开更多
Electronic probe,fluid inclusion homogenization temperature,Raman spectroscopy and laser ablation inductively coupled plasma mass spectrometry were utilized to identify the hydrothermal fluid-rock interactions in the ...Electronic probe,fluid inclusion homogenization temperature,Raman spectroscopy and laser ablation inductively coupled plasma mass spectrometry were utilized to identify the hydrothermal fluid-rock interactions in the second member of the Paleogene Kongdian Formation of Zaoyuan oilfield in Bohai Bay Basin(Kong 2 Member for short)of Well Z56 to find out the relationship between zeolite and hydrothermal fluid.The experimental results show that:(1)Pyrobitumen coexists with hydrothermal fluid characteristic minerals such as chlorite,barite,chalcopyrite,pyrite,natrolite and analcime in mudstone fractures.(2)The temperatures calculated from laser Raman spectrum of pyrobitumen,from the chlorite geothermometer and from measured homogenization temperature of natrolite inclusions are 324-354℃,124-166℃ and 89-196℃,respectively;although vary widely,all the temperatures are obviously higher than the normal geothermal temperature.(3)The positive Eu anomaly of chlorite and barite,and the similar distribution pattern in rare earth elements between natrolite and basalt indicate they are from magmatic hydrothermal fluid.Moreover,drilling data shows that the Kong 2 Member in Well Z56 has several sets of basalt interlayers,suggesting there was geologic base of magmatic hydrothermal fluid activity.The magmatic hydrothermal fluid-rock interaction may be one of the reasons for the abnormal enrichment of zeolite in Kong 2 Member of the Cangdong Sag.展开更多
In recent years, several wells in the Qibei and Wumaying buried hills of Dagang Oilfield tapped oil in the Carboniferous–Permian and Ordovician strata. This major breakthrough reveals that the deep Paleozoic in the B...In recent years, several wells in the Qibei and Wumaying buried hills of Dagang Oilfield tapped oil in the Carboniferous–Permian and Ordovician strata. This major breakthrough reveals that the deep Paleozoic in the Bohai Bay is a new petroleum system. Through re-evaluating the Paleozoic source rock, reservoir-cap combinations and traps, it is found the oil and gas mainly come from Carboniferous–Permian source rock. The study shows that the Paleozoic strata are well preserved in the central-south Huanghua Depression and developed two kinds of reservoirs, Upper Paleozoic clastic rock and Lower Paleozoic carbonate rock, which form favorable source-reservoir assemblages with Carboniferous–Permian coal measure source rock. The Carboniferous–Permian coal-bearing source rock is rich in organic matters, which are mainly composed of type Ⅱ2 and Ⅲ kerogens, and minor Ⅱ1 kerogen in partial areas. Multi-stage tectonic movements resulted in two stages of hydrocarbon generation of the source rocks. The period from the deposition of Kongdian Formation to now is the second stage of hydrocarbon generation. The matching between large-scale oil and gas charging, favorable reservoir-cap combinations and stable structure determines the enrichment of oil and gas. According to the new comprehensive evaluation of Paleozoic petroleum system, the primary oil and gas resources of the Paleozoic in the Bohai Bay Basin are over 1×1012m3. The exploration breakthrough in Paleozoic petroleum system, especially Carboniferous–Permian petroleum system in Huanghua Depression is inspirational for oil and gas exploration in similar provinces of Bohai Bay Basin.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05049-004)Sinopec Project(P22083,P23084).
文摘Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.
基金Supported by Natural Science Foundation of China(41672116)the China National Science and Technology Major Project(2017ZX05049004)
文摘To determine the occurrence mechanism and mobility of shale oil in the Shahejie Formation in the Jiyang Depression, organic geochemistry analysis, thin-section petrological observation, low-temperature nitrogen adsorption, high-pressure mercury intrusion porosimetry, field emission scanning electron microscopy experiments were conducted on shale samples to reveal its storage mechanism, including pore size, ratio of adsorbed oil to free oil, mobility and its influencing factors, and mode of storage. Residual shale oil is mainly present in pores less than 100 nm in diameter under the atmospheric temperature and pressure. The lower limit of pore size for free oil is 5 nm, and the lower limit of pore size for movable oil occurrence is about 30 nm. The light components, low TOC and high porosity are the main factors contributing to the high proportion of movable oil. Each type of pore can contain residual shale oil, but not all pores have shale oil. Pore connectivity and surface wettability are the determinants of shale oil enrichment degree and enrichment state.
基金supported by the National Natural Science Foundation of China(No.41872131).
文摘The stable carbon isotope compositions (δ13C) of individual aromatic hydrocarbons have been analyzed in sulfur-rich and sulfur-lean crude oils from the Huanghekou Depression, Bohai Bay Basin. The δ13C values of individual aromatic hydrocarbons, including alkylbenzenes, alkylnaphthalenes, alkylphenanthrenes, alkylfluorenes and alkyldibenzothiophenes, are reported. The main aims are to find out the origin of these oils and their relationship to paleoclimate. The distribution of aromatic hydrocarbons and maturity parameters show the oils all stay in the low-mature to mature stage. Meanwhile, aromatic hydrocarbons are mainly derived from the diagenetic/catagenetic origin. The δ13C values for 1,2,4-trimethylbenzene (−30.7‰ to −28.8‰) and 1,2,3,4-tetramethylbenzene (−32.4‰ to −26.3‰) indicate the algae-derived organic matter for alkylbenzenes. Some isomers, such as 1,7-+1,3-+1,6-dimethylnaphthalene, 1,2,5-trimethylnaphthalene, 1,2,5,6-+1,2,3,5-tetramethylnaphthalene, 1,10-+1,3-+3,10-+3,9-dimethylphenanthrenes, 1,6-+2,9-+2,5-dimethylphenanthrenes and 4,9-+4,10-+1,9- dimethylphenanthrenes show isotopic depletion (−34.9‰ to −25.2‰), indicating the major contribution of algae for these compounds. Meanwhile, isotopically depleted (−33.6‰ to −26.7‰) alkyldibenzothiophenes represent the algae input. δ13C values for mainly algae-derived naphthalene to trimethylnaphthalenes of sulfur-rich oils are more enriched than those of sulfur-lean oil, with the most significant difference of 4.4‰, indicating that the aridity of the environment and stratified water column result in the enrichment in 13C.
文摘The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection and micro CT scanning data,and a reservoir classification scheme based on pore throat structure parameters is established.The material composition and structural characteristics of tight reservoirs are analyzed by casting thin section data.The pore throat structure characteristics of tight reservoirs are studied by conventional mercury injection,constant rate mercury injection and micro CT scanning.Ten pore throat structure parameters are analyzed by cluster analysis.Based on the classification results and oil test results,the classification scheme of Paleogene tight reservoirs is established.The Paleogene tight reservoirs in the Jiyang depression have the characteristics of macropores and microthroats,with pores in micron scale,throats in nano-submicron scale,and wide variation of ratio of pore radius to throat radius.The permeability of the tight reservoir is controlled by throat radius,the smaller the difference between pore radius and throat radius,and the more uniform the pore throat size,the higher the permeability will be.The lower limits of average pore throat radius for the tight sandstone and tight sandy conglomerate to produce industrial oil flow without fracturing are 0.6μm and 0.8μm,respectively.Reservoirs that can produce industrial oil flow only after fracturing have an average pore-throat radius between 0.2-0.6μm,and reservoirs with average pore throat radius less than 0.2μm are ineffective reservoirs under the current fracturing techniques.Different types of tight sandstone and sandy conglomerate reservoirs are classified and evaluated,which are well applied in exploratory evaluation.
基金granted by the Important National Science&Technology Specific Projects(grants No.2011ZX05006-003 and 2016ZX05006-003)the National Natural Science Foundation(grant No.41372132)
文摘Significant differential hydrocarbon enrichment occurs in depressions in a petroliferous basin.There are multiple depressions in the Bohai Bay Basin, and each depression as a relatively independent unit of hydrocarbon generation, migration and accumulation, contains significantly different hydrocarbon generation conditions and enrichment degree. On the basis of previous documents and a large number of statistical data, this work comparatively analyzed the differential hydrocarbon enrichment and its major controlling factors in depressions of the Bohai Bay Basin. The results show that depressions in the Bohai Bay Basin have various hydrocarbon enrichment degrees, and can be categorized into four types, namely enormously oil-rich, oil-rich, oily and oil-poor depressions. In general, the enormously oil-rich and oil-rich depressions are distributed in the eastern part of the basin along the Tan-Lu and Lan-Liao faults, whereas depressions in the western part of the basin are poor in hydrocarbons. Moreover, the vertical distribution of hydrocarbons is also highly heterogeneous, with Pre-Paleogene strata rich in hydrocarbons in the northern and western depressions, Paleogene strata rich in hydrocarbons in the entire basin, and Neogene strata rich in hydrocarbons in the off-shore areas of the Bohai Bay Basin. From early depressions in onshore areas to the late depressions in offshore areas of the Bohai Bay Basin, the source rocks and source-reservoir-cap rock assemblages gradually become younger and shallower, and the hydrocarbon resource abundance gradually increases. Hydrocarbon supplying condition is the key factor constraining the hydrocarbon enrichment for different depressions,while the main source-reservoir-cap rock assemblage, sufficient hydrocarbons and the transportation capacity of faults control the vertical distribution of hydrocarbons. The main factors controlling hydrocarbon enrichment are different for different layers. The hydrocarbon supplying condition of source rocks is the key controlling factor, whereas the source-reservoir configuration, the main sourcereservoir-cap rock assemblages, and the fault transportation are the main factors of hydrocarbon enrichment in the Paleogene, Paleogene and Neogene, respectively.
基金granted by the National Natural Science Foundation(Grant No.41372132)Important National Science&Technology Specific Projects(Grant No.2011ZX05006-003)
文摘The Bohai Bay Basin contains many depressions with varying degrees of hydrocarbon enrichment associated with the geological structures of different depressions. This study discussed the relationship between the geological structures and hydrocarbon enrichment of the depressions in the Bohai Bay Basin. Based on the Paleogene strata distribution and the length to width ratio of different depressions, their geological structures are divided into three types in plan-view: open(length/width 〈 2), narrow(length/width 〉 4) and transitional types(length/width 2-4). In cross section, the geological structures can be divided into dustpan I, dustpan II and double-faulted types. Based on tectonic evolution and sedimentary characteristics, the depressions are classified into early-formed, inherited and late-formed categories. Generally, narrow depressions are mainly located in the northeast and southwest of the Bohai Bay Basin, while open depressions are dominantly distributed in the central area of the basin; late-formed depressions are mainly around the Bohai sea area, and early-formed depressions are mostly located in the periphery of the basin. Geological structures of the depressions control the formation of the source, reservoir and cap rocks as well as hydrocarbon accumulation setting, and further influence the pay zones and oil-bearing sequence. In detail, dustpan II and doublefaulted depressions mainly have A-type sags, which often possess better hydrocarbon generation conditions than dustpan I ones; hydrocarbons in open dustpan II depressions tend to accumulate in the central uplift areas or buried hill, while those in narrow dustpan I depressions always accumulate in gentle slope belts. The oil-bearing sequence for different evolutional depressions corresponds well with the sedimentary strata of the main development stages of depressions. In early-formed depressions, hydrocarbons are mainly enriched in deeply buried reservoirs, while in late-formed depressions hydrocarbons are abundant in the relatively shallow traps. In summary, most inherited and late-formed dustpan II depressions are enriched in hydrocarbons due to their extensive source rocks and good source-reservoir-seal assemblages, whereas dustpan I and early-formed depressions are relatively poor in hydrocarbons.
基金supported by the National Natural Science Foundation of China(grant No.41330315)National Science and Technology Major Project(grant No.2011ZX05023001-002)MOST Special Funds from the State Key Laboratory of Continental Dynamics(grant No.BJ081334)
文摘The third member of Shahejie Formation (Sha-3 member; 42–38Ma of Eocene) in the Bozhong Depression, offshore Bohai Bay Basin was subject to multiple post-depositional modifications. The present structural framework of the Bozhong Depression, which is characterized by sags alternating with uplifts, does not reflect its original sedimentary pattern. Previous studies have not discussed the post-depositional modification of this succession, including the sedimentary pattern variations and the depositional geodynamic setting. This work determined the characteristics of the post-depositional modification and original sedimentary pattern of the Bozhong Depression through analysis of seismic data, well-log data and fission-track ages. The results demonstrate that the Shijiutuo rise, a major structural feature of the current basin, did not exist during the major depositional stage of the Sha-3 member, when the Qinnan sag was largely connected to the Bozhong sag to form a single contiguous deposition area within the basin. By contrast, the Shaleitian and Chengbei rises, located in the western part of the Bozhong Depression, have existed before the depositional period of the Eocene Sha-3 member; these features were manifested as syn-depositional tilted fault blocks, the uplifted footwall blocks of which provided sediments for the neighboring Shanan and Chengbei sags. The western part of the Bonan low rise, located in the southern part of the Bozhong Depression, did not experience uplifting during the depositional phase of the Eocene Sha-3 member. The Huanghekou sag was connected with the Bozhong sag in the western part of the Bozhong Depression. The original sedimentary boundary of the southern Miaoxi sag possibly extended eastward about 10 km and connected with the Bozhong sag at its northern part. The present-day Bodong low rise, which is bounded by the Tan–Lu fault zone, also formed after the depositional period of Eocene Sha-3 member. It is thus concluded that the Bozhong Depression formed a connected large-scale sub-basin during the depositional stage of the Eocene Sha-3 member. Several neighboring sags that are now separated by rises, including the Qinnan, Shanan, Chengbei, Huanghekou, Miaoxi and Bodong sags, formed a single contiguous depositional area during the Eocene. The significant differences between the present and original basin patter and framework provide valuable information for better understanding the history of basin inversion and its impact on related hydrocarbon-system evolution.
基金Supported by the PetroChina Science and Technology Major Project(2019E-2601,2018E-11)
文摘Compared with marine facies shale strata,lacustrine shale strata are more complicated in geological conditions,and thus more difficult to explore and develop.To realize economic exploration and development of lacustrine shale oil,the geological regularities of accumulation and high yield of retained movable petroleum in shale should be understood first.In this work,taking the shale strata of Kong 2 Member and Sha 3 Member in the Paleogene of Huanghua depression in the Bohai Bay Basin as examples,based on the previous joint analysis results of over ten thousand core samples and the latest oil testing,production test and geochemical data of more than 30 horizontal wells,accumulation conditions and models of retained movable petroleum in lacustrine shale were studied comprehensively.The study shows that at moderate organic matter abundance(with TOC from 2%to 4%),shale strata have the best match between oil content and brittleness,and thus are rich in oil and good in fracability.Moderate ancient lake basin size and moderate sediment supply intensity are the internal factors leading to best coupling of organic matter abundance and brittle mineral content in the shale formation.Moderate thermal evolution maturity of Ro of 0.7%–1.0%(at burial depth of 3200 to 4300 m)is the interval where oil generation from thermal evolution and oil adsorption by kerogen in shale layers match best,and retained movable petroleum is high in proportion.Moderate diagenetic evolution stage(3200 to 4300 m in the middle diagenetic stage A)is conducive to the formation of a large number of dissolved pores and organic matter pores,which provide storage space for shale oil enrichment.Moderate development degree of natural fractures(without damaging the shale oil roof and floor sealing conditions)is conducive to the storage,seepage and preservation of shale oil.The research results have overthrown the general understanding that high organic matter abundance,high maturity,and high development degree of natural fractures are conducive to shale oil enrichment,and have guided the comprehensive evaluation of shale oil and gas sweet spots and well deployment in the second member of the Kongdian Formation in the Cangdong sag and the Shahejie Formation in the Qikou sag.Industrial development of the shale oil in Kong 2 Member of the Cangdong sag has made major breakthrough,and important signs of shale oil have been found in Sha 3 Member of the Qikou sag,demonstrating huge exploration potential of lacustrine shale oil.
基金Supported by the National Natural Science Foundation of China(41602129,41602164)China National Science and Technology Major Project(2016ZX05007003,2016ZX05006-005)
文摘The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.
基金Supported by the PetroChina Science and Technology Major Project(2018E-11-02)
文摘Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derived from the Upper Paleozoic coal source rock, the petroleum reservoir is an inner buried-hill primary oil and gas accumulation, showing a good prospect of the Paleozoic inner buried-hill primary reservoir exploration. The formation and accumulation of the primary petroleum reservoir in the Wumaying inner buried-hill are discussed by studying the primary source conditions, the inner buried-hill reservoir-cap combinations and the hydrocarbon accumulation period. The primary petroleum reservoir has three preponderant characteristics of accumulation: secondary large-scale gas generation of coal source rock, multi reservoir-cap combinations and mainly late hydrocarbon charging, which formed the compound hydrocarbon accumulation of the above-source sandstone and under-source carbonate rock in the Paleozoic inner buried-hill. Along with the Mesozoic and Cenozoic tectonic activities, the formation of the primary reservoir in Wumaying inner buried-hill is characterized by "mixed oil and gas charge in local parts in early stage, adjustment accumulation due to structural high migration in middle stage, and large-scale natural gas charge and compound accumulation in late stage".
基金This study was supported by the National Natural Science Foundation of China(Grant No.42072194,U1910205)the Fundamental Research Funds for the Central Universities(800015Z1190,2021YJSDC02).
文摘Deciphering hydrocarbon generation and accumulation stage is of significance to understand oil and gas evolution and seek exploration targets.Taking the Upper Paleozoic buried-hills in the Huanghua Depression,Bohai Bay Basin,as a case study,hydrocarbon generation environment and detailed accumulation process are revealed by fluid inclusions observations,Laser Raman spectroscopy,Fourier Infrared spectroscopy,and K-Ar isotope measurements.The results show that both oil and gas inclusion were captured in the quartz overgrowth,dissolved feldspar and calcite microfractures,showing blue to dark brown fluoresce.The grains containing oil inclusions index(GOI)of oil,oil&gas and gas being 25%,65%,and 10%and the inclusions with abundant methyl groups and short chains,both indicate high thermal maturity.One series of fluids inclusion is generally observed,evidenced by the concentrated homogenization temperature of 135-145℃ and salinity of 3%-15 w.t.%NaCl equiv,indicating one primary charging stage.The gas and gas&liquid inclusions mainly contain CH_(4),with also peaks indicating CO_(2) and N_(2.)The Carboniferous and Permian biomarkers show reducing environment with brackish water,with organic matter sources both from marine and continental.The relative content ofααα20RC_(27),ααα20RC_(28),andααα20RC_(29) exhibit source contributions both from algae and higher plants,and mainly of II2 to III kerogen.Both coal derived gas and oil associated hydrocarbons are identified from most of the buried-hills.Combining the fluid homogenization temperature and salinity,as well as the thermal evolution history,the hydrocarbon generated from the Upper Paleozoic was concentrated at the end of the Eocene(40 Ma±),while the beginning of charging is 60 Ma±.The Wumaying Buried-hill is of only coal derived gas and has potential for inner coal measure natural gas exploration.The results provide a detailed understanding of hydrocarbon accumulations in the study area,which can also be reference for improving petroleum exploration efficiency in similar basins.
基金jointly supported by grants from the Natural Science Foundation of China(grants No.41402110 and 41330313)“Fundamental Research Funds for the Central Universities”(grants No.14CX05017A and 13CX05013A)
文摘Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by using rock pyrolysis, TOC (total organic carbon), XRD (X-ray diffraction), SEM (scanning electron microscope), FE-SEM (field emission scanning electron microscope), high pressure mercury intrusion, and low pressure N2 and CO2 gas adsorption experiments, in aim to reveal their reservoir features. The results show that: (1) the width of micro-pores of all the studied samples mainly ranges from 0.45 to 0.7 nm indicated by CO2 isotherms, and the width of meso-pores is less than 10 nm, with type IV adsorption isotherms and type H2 hysteresis loop, indicative of "ink-bottle"-shaped pores. Good correlations exist among pore volume, surface area and averaged pore diameter, and a good positive correlation exists between micro-pore volume and TOC content; however, there is no obvious correlation between meso-pore volume and TOC content; (2) interparticle pores, pores among the edge of mineral grains and organic matter pores were all identified in marine and lacustrine shale, among which the interparticle pores may be influence by dissolution effect. Not all bitumen develops organic matter pore, and only high to over mature bitumen present pores. Now the description methods of micrometer scale pores developed in shale are very lack. Micro- fractures developed in Jiyang depression and dissolution interparticle pores developed in Songliao Basin should be the accumulation sites for shale oil in lacustrine shale, and can be as sweet spots.
基金financially supported by the Chinese NSF Grants[41903064]to Hong Lu。
文摘Geochemical studies of crude oil and source rock play an important role in future exploration in Zhanhua Depression.In this study,thirty-one oil samples collected from Shahejie Formation in Zhanhua Depression,Bohai Bay Basin,NE China have been geochemically analyzed and their organic geochemical characteristics have been applied to differentiate groups of oils.These oil samples can be classified into two families based on multiple biomarker proxies and stable carbon isotopic values.FamilyⅠis characterized by a low ratio of pristane over phytane(Pr/Ph<0.7),a relatively high ratio of phytane over n-C18(Ph/n-C18),varying ratios of gammacerane over C30 hopane(Ga/C30H)and C22/C21 tricyclic terpane,and a low ratio of C19/C23 tricyclic terpane.FamilyⅡis marked by a relatively high Pr/Ph ratio(0.7-1.6),relative low ratios of Ph/n-C18 and C22/C21 tricyclic terpane,and avarying ratio of C19/C23 tricyclic terpane.Both familiesⅠandⅡwithin these crude oils can be subdivided into two families based on different values of stable carbon isotopic composition of individual n-alkanes.Moreover,the potential source rocks of oil samples in FamilyⅠand FamilyⅡwere likely derived from the upper Es4 member and Es3 member,respectively,based on the correlation of organic geochemical characteristics of the oils and source rocks.The results of oil-source rock correlation provide insight into the process from oil generation to migration and to final accumulation,providing a better understanding of factors controlling oil-gas distribution for prediction of sweet spots.
文摘Huanghua depression,in the middle of Bohai Bay basin,is a major secondary sedimentary and petroliferous unit.Although this basin has been explored for nearly 50 years,the discovery of new reservoirs increased quickly in recent years.The subduction of the Pacific Plate to the Eurasia Plate caused the transtensional deformation of the whole basin.During the Paleogene,the depocenters and subsidence centers
文摘The deep buried clastic formation of Paleogene is an important hydrocarbon reservoir in the Chezhen depression.There are two types of diagenetic alteration modes in it.The first mode is weak compaction, strong cementation,fracturing and weak dissolution in the sandstone and conglomerate on the steep slope of the depression.The reservoirs are cemented mainly by carbonate minerals strongly。
文摘Enrichment of hydrocarbon reservoir relates to the slope break types in continental basin(sag)in China. Division and analysis of genetic types of slope break will help to study the enrichment regularity of hydrocarbon reservoir and is conducive to the guiding of future development in exploration and enhancing prediction accuracy.This paper,guided by the theory of sequence stratigraphy and using high-resolution three-dimensional seismic data,drilling and other information,takes into account the characteristics
基金granted by the Science Foundation of the Chinese University of Petroleum,Beijing(Grant No.2462020YXZZ021)the National Natural Science Foundation of China(Grant No.41872128)。
文摘The Dongpu Depression is a secondary salt-bearing tectonic unit in the Bohai Bay Basin,eastern China.The depositional environment of this depression regarding its Paleogene strata is clearly different in plane,including the saltwater environment(SE)in the north,the freshwater environment(FE)in the south and the brackish water environment(BE)in the middle.The result of oil and gas exploration in the Dongpu Depression shows that more than 90%of the proven oil reserves are distributed in the northern saltwater environment.Previous studies indicate that the organic geochemistry characteristics and the hydrocarbon generation capacity of the source rocks are very clearly diverse under different environments,which results in the significant differences in the proved reserves between the north and the south.In order to further explore the differences in the hydrocarbon generation capacity of the source rocks under distinct depositional environments and the mechanism of their occurrence,three samples from different depositional environments(W18-5 for SE,H7-18 for BE,CH9 for FE)were used for confined gold tube pyrolysis experiments.The results show that the CH4 yields of W18-5,H7-18 and CH9 increase with increasing temperature,the maximum yields being 405.62 mg/g TOC,388.56 mg/g TOC and 367.89 mg/g TOC,respectively.The liquid hydrocarbon yields of W18-5,H7-18 and CH9 firstly increase with increasing temperature and then decrease after the critical temperatures.The maximum yields of C6-14 are 149.54 mg/g TOC,140.18 mg/g TOC and 116.94 mg/g TOC,the maximum yields of C14+being 852.4 mg/g TOC,652.6 mg/g TOC and 596.41 mg/g TOC,respectively for W18-5,H7-18 and CH9.To summarize,the order of hydrocarbon potential from high to low is W18-5,H7-18 and CH9.On this basis,through analyzing the influencing factors of hydrocarbon differences,this paper reveals that the saltwater environment is characterized by 4 factors:higher salinity,halophilic algae,high paleo-productivity and a strongly reducing environment,which are beneficial to the enrichment of organic matter and lead to the formation of high levels of sapropelite and exinite.According to the variation of oil and gas components in the pyrolysis experiments,the hydrocarbon generation process is divided into three stages:kerogen cracking,oil cracking and C2-5 cracking.Combined with hydrocarbon generation characteristics and stages,the evolutionary model of hydrocarbon generation for source rocks under different environments is established.
基金Supported by the Petro China Dagang Oilfield Company Project(DGTY-2018-JS-408)National Nature Science Foundation of China(U20B6001)。
文摘Electronic probe,fluid inclusion homogenization temperature,Raman spectroscopy and laser ablation inductively coupled plasma mass spectrometry were utilized to identify the hydrothermal fluid-rock interactions in the second member of the Paleogene Kongdian Formation of Zaoyuan oilfield in Bohai Bay Basin(Kong 2 Member for short)of Well Z56 to find out the relationship between zeolite and hydrothermal fluid.The experimental results show that:(1)Pyrobitumen coexists with hydrothermal fluid characteristic minerals such as chlorite,barite,chalcopyrite,pyrite,natrolite and analcime in mudstone fractures.(2)The temperatures calculated from laser Raman spectrum of pyrobitumen,from the chlorite geothermometer and from measured homogenization temperature of natrolite inclusions are 324-354℃,124-166℃ and 89-196℃,respectively;although vary widely,all the temperatures are obviously higher than the normal geothermal temperature.(3)The positive Eu anomaly of chlorite and barite,and the similar distribution pattern in rare earth elements between natrolite and basalt indicate they are from magmatic hydrothermal fluid.Moreover,drilling data shows that the Kong 2 Member in Well Z56 has several sets of basalt interlayers,suggesting there was geologic base of magmatic hydrothermal fluid activity.The magmatic hydrothermal fluid-rock interaction may be one of the reasons for the abnormal enrichment of zeolite in Kong 2 Member of the Cangdong Sag.
基金Supported by the National Science and Technology Major Project(2016ZX05006-005)PetroChina Science and Technology Major Project(2018E-11)
文摘In recent years, several wells in the Qibei and Wumaying buried hills of Dagang Oilfield tapped oil in the Carboniferous–Permian and Ordovician strata. This major breakthrough reveals that the deep Paleozoic in the Bohai Bay is a new petroleum system. Through re-evaluating the Paleozoic source rock, reservoir-cap combinations and traps, it is found the oil and gas mainly come from Carboniferous–Permian source rock. The study shows that the Paleozoic strata are well preserved in the central-south Huanghua Depression and developed two kinds of reservoirs, Upper Paleozoic clastic rock and Lower Paleozoic carbonate rock, which form favorable source-reservoir assemblages with Carboniferous–Permian coal measure source rock. The Carboniferous–Permian coal-bearing source rock is rich in organic matters, which are mainly composed of type Ⅱ2 and Ⅲ kerogens, and minor Ⅱ1 kerogen in partial areas. Multi-stage tectonic movements resulted in two stages of hydrocarbon generation of the source rocks. The period from the deposition of Kongdian Formation to now is the second stage of hydrocarbon generation. The matching between large-scale oil and gas charging, favorable reservoir-cap combinations and stable structure determines the enrichment of oil and gas. According to the new comprehensive evaluation of Paleozoic petroleum system, the primary oil and gas resources of the Paleozoic in the Bohai Bay Basin are over 1×1012m3. The exploration breakthrough in Paleozoic petroleum system, especially Carboniferous–Permian petroleum system in Huanghua Depression is inspirational for oil and gas exploration in similar provinces of Bohai Bay Basin.