Fast walking and jogging are two common exercises for people to maintain health in daily life.But the differences in loading patterns of fast walking and jogging are still unclear.The purpose of this study was to comp...Fast walking and jogging are two common exercises for people to maintain health in daily life.But the differences in loading patterns of fast walking and jogging are still unclear.The purpose of this study was to compare loading patterns in fast walking and jogging at the same speed,and to identify how differences in foot mechanics influence plantar pressure distribution between the two modes of gait.Totally,49 healthy males participated in this study.Data of pressure parameters,including maximum force(MF),peak pressure(PP),contact area(CA),force-time integral(FTI),were recorded by Pedar-X insole plantar pressure measurement system in participants’fast walking and jogging process at 7 km/h.A Load transfer analysis method was used to quantify the plantar load transference from fast walking to jogging.The results showed that MF,PP and CA increased in metatarsal regions and midfoot regions while decreased in toes regions and heel during jogging when compared with fast walking.FTI decreased in all foot regions during jogging compared to fast walking.Under the effects of spring mechanics and the varus of rearfoot during jogging,fast walking and jogging reveal different loading patterns.Compared jogging to fast walking,load transferred as follow:1)in transverse direction,load transferred from lateral foot to medial foot in metatarsal regions and midfoot regions,2)in longitudinal direction,load transferred from toes to the metatarsal,and from heel to the metatarsal and midfoot.These results also provide suggestions for footwear designs.展开更多
An eutectic high-entropy alloy consisting Al, Co, Cr, Fe and Ni elements was prepared by vacuum directional solidification technology. The alloy exhibits excellent comprehensive mechanical performance during tension a...An eutectic high-entropy alloy consisting Al, Co, Cr, Fe and Ni elements was prepared by vacuum directional solidification technology. The alloy exhibits excellent comprehensive mechanical performance during tension at temperature range of 600–700℃. The microstructure reveals the intersection of twintwin is the prevailing deformation mechanism and the twins play a dual role in strengthening and toughening the alloy in the thermomechanical process. The deformation twin variants I and were formed by the edge dislocation 112 and the mixed dislocation 211 on the {111} crystal planes, respectively. Besides, the dislocation jogs and kinks caused by twin intersection on the slip planes can strengthen the alloy, which may contribute to the high strength(the tensile strengths at the 600°and 700°tensile tests are respectively780 MPa and 630 MPa.). Moreover, the coherent twin boundary migration has the function of coordinating deformation and contributes to the high ductility of the alloy.展开更多
Studying the effect of geometrically irregular bodies on the mechanical behavior of fault activity is of significance in understanding the seismic activity along a fault zone. By using rock mechanics ex- periment with...Studying the effect of geometrically irregular bodies on the mechanical behavior of fault activity is of significance in understanding the seismic activity along a fault zone. By using rock mechanics ex- periment with medium-scale samples, we have studied the effect of fault jogs, the most common irregularity along fault zones, on frictional behavior. The research indicates that extensional fault jog can be easily fractured because of its low strength and the fractured jog has no obvious resistance to fault sliding, and the micro-fractures occurring in the jog are indicative of stick-slip along the faults. The fault zone containing extensional jogs is characterized by velocity weakening and can be described by rate and state friction law. Compressional fault jog makes fault sliding more difficult because of its high fracturing strength, but the micro-fractures occurring in the tensile areas around fault ends at higher stress level can provide necessary condition for occurrence of stick-slip along the faults before the jog is fractured and thus act as precursors of fault instability. Compression jog can be taken as a stable indicator of fault segmentation until the jog is completely fractured and two faults are linked.展开更多
基金supported by National Natural Science Foundation of China,grant number:11502154.
文摘Fast walking and jogging are two common exercises for people to maintain health in daily life.But the differences in loading patterns of fast walking and jogging are still unclear.The purpose of this study was to compare loading patterns in fast walking and jogging at the same speed,and to identify how differences in foot mechanics influence plantar pressure distribution between the two modes of gait.Totally,49 healthy males participated in this study.Data of pressure parameters,including maximum force(MF),peak pressure(PP),contact area(CA),force-time integral(FTI),were recorded by Pedar-X insole plantar pressure measurement system in participants’fast walking and jogging process at 7 km/h.A Load transfer analysis method was used to quantify the plantar load transference from fast walking to jogging.The results showed that MF,PP and CA increased in metatarsal regions and midfoot regions while decreased in toes regions and heel during jogging when compared with fast walking.FTI decreased in all foot regions during jogging compared to fast walking.Under the effects of spring mechanics and the varus of rearfoot during jogging,fast walking and jogging reveal different loading patterns.Compared jogging to fast walking,load transferred as follow:1)in transverse direction,load transferred from lateral foot to medial foot in metatarsal regions and midfoot regions,2)in longitudinal direction,load transferred from toes to the metatarsal,and from heel to the metatarsal and midfoot.These results also provide suggestions for footwear designs.
基金financially supported by the National Natural Science Foundation of China (Nos: 51601192 and 51671188)the High Technology Research and Development Program of China (No. 2014AA041701)the National Key R & D Program of China (2018YFB1106600)
文摘An eutectic high-entropy alloy consisting Al, Co, Cr, Fe and Ni elements was prepared by vacuum directional solidification technology. The alloy exhibits excellent comprehensive mechanical performance during tension at temperature range of 600–700℃. The microstructure reveals the intersection of twintwin is the prevailing deformation mechanism and the twins play a dual role in strengthening and toughening the alloy in the thermomechanical process. The deformation twin variants I and were formed by the edge dislocation 112 and the mixed dislocation 211 on the {111} crystal planes, respectively. Besides, the dislocation jogs and kinks caused by twin intersection on the slip planes can strengthen the alloy, which may contribute to the high strength(the tensile strengths at the 600°and 700°tensile tests are respectively780 MPa and 630 MPa.). Moreover, the coherent twin boundary migration has the function of coordinating deformation and contributes to the high ductility of the alloy.
基金the National Basic Research Program of China (Grant No. 2004CB418405)National Key Technologies R&D Program (Grant No. 2006BAC01B03)
文摘Studying the effect of geometrically irregular bodies on the mechanical behavior of fault activity is of significance in understanding the seismic activity along a fault zone. By using rock mechanics ex- periment with medium-scale samples, we have studied the effect of fault jogs, the most common irregularity along fault zones, on frictional behavior. The research indicates that extensional fault jog can be easily fractured because of its low strength and the fractured jog has no obvious resistance to fault sliding, and the micro-fractures occurring in the jog are indicative of stick-slip along the faults. The fault zone containing extensional jogs is characterized by velocity weakening and can be described by rate and state friction law. Compressional fault jog makes fault sliding more difficult because of its high fracturing strength, but the micro-fractures occurring in the tensile areas around fault ends at higher stress level can provide necessary condition for occurrence of stick-slip along the faults before the jog is fractured and thus act as precursors of fault instability. Compression jog can be taken as a stable indicator of fault segmentation until the jog is completely fractured and two faults are linked.