期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于LGJMS-GMPHDF的多机动目标联合检测、跟踪与分类算法 被引量:7
1
作者 杨威 付耀文 +1 位作者 黎湘 龙建乾 《电子与信息学报》 EI CSCD 北大核心 2012年第2期398-403,共6页
线性高斯跳变马尔可夫系统模型下的高斯混合概率假设密度滤波器(LGJMS-GMPHDF)为杂波背景下多机动目标跟踪提供了一种有效方法。该文将类别辅助信息引入LGJMS-GMPHDF,提出了一种密集杂波背景下多机动目标联合检测、跟踪与分类算法。该... 线性高斯跳变马尔可夫系统模型下的高斯混合概率假设密度滤波器(LGJMS-GMPHDF)为杂波背景下多机动目标跟踪提供了一种有效方法。该文将类别辅助信息引入LGJMS-GMPHDF,提出了一种密集杂波背景下多机动目标联合检测、跟踪与分类算法。该算法在LGJMS-GMPHDF中用属性向量扩展单目标状态向量,用位置和属性的组合测量似然函数代替单目标位置及杂波位置测量似然函数,提高了不同类目标与杂波测量间的鉴别能力,进而改善了目标数目及状态的估计精度;在更新目标状态的同时,对目标属性信息进行更新。该算法实现了时变数目的目标状态和类别估计。杂波背景下交叉和临近并行机动目标的跟踪实验验证了该文算法的联合检测、跟踪与分类性能。 展开更多
关键词 多机动目标跟踪 概率假设密度滤波器 类别辅助目标跟踪 联合目标检测、跟踪与分类
下载PDF
基于PHD的多扩展目标联合检测、跟踪与分类算法 被引量:4
2
作者 王震 敬忠良 +2 位作者 雷明 秦彦源 董鹏 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第11期1589-1596,共8页
针对杂波和噪声背景下空间距离较近的扩展目标数目和状态难以估计的问题,提出了基于扩展目标概率假设密度滤波器(ET-PHD)的多目标联合检测、跟踪与分类算法,并给出了该算法基于粒子滤波的实现方法.算法在滤波器中引入了属性量测信息,预... 针对杂波和噪声背景下空间距离较近的扩展目标数目和状态难以估计的问题,提出了基于扩展目标概率假设密度滤波器(ET-PHD)的多目标联合检测、跟踪与分类算法,并给出了该算法基于粒子滤波的实现方法.算法在滤波器中引入了属性量测信息,预测阶段的粒子按照其类别进行传播,更新阶段对所有粒子进行联合更新,更新结束后将粒子按照类别进行分类,各类别的粒子集表示了其相应类别目标的PHD分布.该算法具有模块化结构,计算复杂度为O(mn).数值仿真场景包含两类扩展目标并行运动和两类扩展目标交叉运动.结果表明,该算法可以同时估计扩展目标的类别、数目和状态,并且平均最优次模式分配距离相比传统算法的降低幅度超过50%. 展开更多
关键词 多扩展目标跟踪 扩展目标概率假设密度滤波器 类别辅助目标跟踪 联合检测 跟踪与分类
下载PDF
基于雷达测量的多目标联合检测、跟踪与分类方法 被引量:4
3
作者 石绍应 杜鹏飞 +1 位作者 张靖 曹晨 《电波科学学报》 EI CSCD 北大核心 2016年第1期10-18,共9页
利用雷达测量中的目标速度、加速度等属性信息,基于跳转马尔科夫系统模型高斯混合概率假设密度滤波算法,提出了一种多目标联合检测、跟踪与分类方法.该方法在进行雷达多目标测量信息处理的多模型混合高斯概率假设密度滤波过程中,对各高... 利用雷达测量中的目标速度、加速度等属性信息,基于跳转马尔科夫系统模型高斯混合概率假设密度滤波算法,提出了一种多目标联合检测、跟踪与分类方法.该方法在进行雷达多目标测量信息处理的多模型混合高斯概率假设密度滤波过程中,对各高斯项编号,进行航迹提取,在滤波处理的同时形成带有航迹编号的明确航迹,并进行航迹管理;同时,根据目标运动模型,联合利用目标加速度控制输入与速度估计进行多目标分类.仿真试验验证了该方法能够在检测、跟踪的同时,对目标航迹进行有效类型识别. 展开更多
关键词 多运动模型 多目标联合检测、跟踪与分类 高斯混合概率假设密度滤波 航迹管理
下载PDF
多传感器目标检测跟踪与分类算法 被引量:1
4
作者 秦彦源 敬忠良 雷明 《计算机仿真》 CSCD 北大核心 2014年第9期364-368,共5页
在目标准确检测优化的研究中,单传感器联合检测、跟踪和分类算法是一种新型算法,可以同时对目标进行检测、状态估计和类别判断。然而上述算法估计目标数目、状态与类别性能较差。采用多传感器方法对目标进行观测,可以显著提高目标检测... 在目标准确检测优化的研究中,单传感器联合检测、跟踪和分类算法是一种新型算法,可以同时对目标进行检测、状态估计和类别判断。然而上述算法估计目标数目、状态与类别性能较差。采用多传感器方法对目标进行观测,可以显著提高目标检测、跟踪与分类效果。提出基于粒子概率假设密度(PFPHD)滤波器的多传感器联合检测、跟踪和分类算法。首先通过对各传感器信号进行建模,提取目标的属性量测,然后引入目标的属性信息对目标状态空间进行重新建模,从而得到目标综合状态,最后利用多个传感器的量测对综合状态进行序贯处理。仿真结果表明,与单传感器联合算法相比,上述算法能够更准确判断多目标类别,目标数目估计精度和跟踪精度均提高20%以上,验证了算法的有效性和可行性。 展开更多
关键词 联合检测、跟踪与分类 概率假设密度滤波器 多传感器融合
下载PDF
基于MMPHDF的多机动目标联合检测、跟踪与分类算法 被引量:6
5
作者 杨威 付耀文 +1 位作者 黎湘 龙建乾 《中国科学:信息科学》 CSCD 2012年第7期893-906,共14页
针对场景中存在新目标出现、旧目标消失(即目标数目变化)和密集杂波的复杂情形,利用多模型概率假设密度滤波器(MMPHDF)在多机动目标联合检测与跟踪上的优势,加入类别辅助信息,提出了一种多机动目标联合检测、跟踪与分类算法.该算法的基... 针对场景中存在新目标出现、旧目标消失(即目标数目变化)和密集杂波的复杂情形,利用多模型概率假设密度滤波器(MMPHDF)在多机动目标联合检测与跟踪上的优势,加入类别辅助信息,提出了一种多机动目标联合检测、跟踪与分类算法.该算法的基本思想是在MMPHDF中用属性向量扩展单目标状态向量,用位置和属性的组合测量似然函数代替单目标位置及杂波位置测量似然函数,提高了不同类目标与杂波测量间的鉴别能力,从而改善了目标数目及状态的估计精度;在更新目标状态后,对目标属性信息进行更新,更为精确的目标数目及状态估计又保证了目标分类性能.本文给出了该算法的粒子实现方法.仿真结果验证了上述结论. 展开更多
关键词 有限集统计学理论 多机动目标联合检测与跟踪 联合目标跟踪与分类 多机动目标联合检测 跟踪与分类 类别辅助目标跟踪 目标跟踪 分类 非线性滤波
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部