期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A SPARSITY AND COMPRESSION RATIO JOINT ADJUSTMENT METHOD FOR COLLABORATIVE SPECTRUM SENSING 被引量:1
1
作者 Chi Jingxiu Zhang Jianwu Xu Xiaorong 《Journal of Electronics(China)》 2012年第6期604-610,共7页
Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity an... Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing. 展开更多
关键词 Collaborative spectrum sensing Sparsity level Compression ratio joint adjustment method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部