Various defects exist in natural rock masses,withfilled joints being a vital factor complicating both the mechanical characteristics and seepage mechanisms of the rock mass.Filled jointed rocks usually show mechanical ...Various defects exist in natural rock masses,withfilled joints being a vital factor complicating both the mechanical characteristics and seepage mechanisms of the rock mass.Filled jointed rocks usually show mechanical properties that are weaker than those of intact rocks but stronger than those of rocks with fractures.The shape of the rock,filling material,prefabricatedfissure geometry,fissure roughness,fissure inclination angle,and other factors mainly influence the mechanical and seepage properties.This paper systematically reviews the research progress andfindings onfilled rock joints,focusing on three key aspects:mechanical properties,seepage properties,andflow properties under mechanical response.First,the study emphasizes the effects of prefabricated defects(shape,size,filling material,inclination angle,and other factors)on the mechanical properties of the rock.The fracture extension behavior of rock masses is revealed by the stress state of rocks withfilled joints under uniaxial compression,using advanced auxiliary test techniques.Second,the seepage properties of rocks withfilled joints are discussed and summarized through theoretical analysis,experi-mental research,and numerical simulations,focusing on organizing the seepage equations of these rocks.The study also considers the form of failure under stress-seepage coupling for both fullyfilled and partiallyfilledfissured rocks.Finally,the limitations in the current research on the rock withfilled joints are pointed out.It is emphasized that the specimens should more closely resemble real conditions,the analysis of mechanical indexes should be multi-parameterized,the construction of the seepage model should be refined,and the engineering coupling application should be multi-field-multiphase.展开更多
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province for Funding support,Grant/Award Number:KYCX22_2843Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:2024XKT0628National Natural Science Foundation of China,Grant/Award Number:52034007。
文摘Various defects exist in natural rock masses,withfilled joints being a vital factor complicating both the mechanical characteristics and seepage mechanisms of the rock mass.Filled jointed rocks usually show mechanical properties that are weaker than those of intact rocks but stronger than those of rocks with fractures.The shape of the rock,filling material,prefabricatedfissure geometry,fissure roughness,fissure inclination angle,and other factors mainly influence the mechanical and seepage properties.This paper systematically reviews the research progress andfindings onfilled rock joints,focusing on three key aspects:mechanical properties,seepage properties,andflow properties under mechanical response.First,the study emphasizes the effects of prefabricated defects(shape,size,filling material,inclination angle,and other factors)on the mechanical properties of the rock.The fracture extension behavior of rock masses is revealed by the stress state of rocks withfilled joints under uniaxial compression,using advanced auxiliary test techniques.Second,the seepage properties of rocks withfilled joints are discussed and summarized through theoretical analysis,experi-mental research,and numerical simulations,focusing on organizing the seepage equations of these rocks.The study also considers the form of failure under stress-seepage coupling for both fullyfilled and partiallyfilledfissured rocks.Finally,the limitations in the current research on the rock withfilled joints are pointed out.It is emphasized that the specimens should more closely resemble real conditions,the analysis of mechanical indexes should be multi-parameterized,the construction of the seepage model should be refined,and the engineering coupling application should be multi-field-multiphase.