Purpose-Following the regional restructuring,the number of joint-venture railway companies in which the Group participates has significantly increased.This paper aims to explore the challenges faced by China Railway G...Purpose-Following the regional restructuring,the number of joint-venture railway companies in which the Group participates has significantly increased.This paper aims to explore the challenges faced by China Railway Group in managing participation in joint-venture railway companies.The study seeks to propose specific approaches to ensure the effective management of these companies,thereby maximizing the benefits of the regional restructuring and supporting the development of a strong transportation country and a modern infrastructure system.Design/methodology/approach-Based on the change in the shareholding relationship between China Railway Group and the joint-venture railway companies,and considering the current situation of the regional restructuring of these companies,as well as the insights from existing literature and typical case studies,this paper proposes some specific paths for effective management of joint-stock railway companies which China Railway Group participated in.Findings-The problems in participation management are the unclear dual leadership role of the party committee,the lack of discourse power,the lack of synergy between shareholders,the increasing risk of sustainable operation of the loss-making companies and the role of dispatched personnel is not fully played.Based on the theories,combined with the existing research and practical cases,the paper proposed specific approaches,such as perfecting top-level system design,maintaining the discourse power,carrying out differentiated management,arranging personnel rationally,arranging shareholders synergy,and innovating methods to provide references for China Railway Group’s subsequent management of joint venture railway companies.Originality/value-This paper contributes to the existing literature by providing a comprehensive analysis of the challenges faced by China Railway Group in managing participation in joint-venture railway companies following the regional restructuring.The study offers novel insights and practical recommendations for addressing these challenges.The findings can serve as valuable references for China Railway Group’s subsequent management of joint-venture railway companies which participated in,as well as for other stateowned enterprises facing similar challenges in managing their joint ventures.展开更多
In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a que...In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a questionnaire survey method to study the learning effectiveness of students majoring in digital media technology in the China-UK Joint Education Program at Guangxi University of Finance and Economics,focusing on four aspects:learning materials,learning content,teacher conditions,and student learning outcomes.The research analysis in this paper not only provides strong support for the construction of China-UK Joint Education Program but also offers references for other China-UK Joint Education Programs.展开更多
A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C...A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.展开更多
The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A...The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.展开更多
A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of...A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe ...Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe failure must include both the pipe deterioration model and mechanics model. Winkler pipe-soil interaction (WPSI), an analytical mechanics model developed by Rajani and Tesfamariam (2004), takes external and internal loads, temperature changes, loss of bedding support, and the elastoplastic effect of soil into consideration. Based on the WPSI model, a method to evaluate the elastic and plastic areas was proposed in the present study. An FEM model based on pipe-soil interaction (PSI) element was used to verify the analytical model. Sensitivity analyses indicate that the soft soil, long pipe and high temperature induced the axial plastic deformation more likely, which, however, may not occur in normal scenarios. The soft soil, pipes in small diameters, long unsupported bedding are prone to form flexural plastic area. The results show that the pipes subjected to the same loads have smaller stresses in the elastoplastic analysis than elastic analysis. The difference, however, is slight.展开更多
In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is f...In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.展开更多
Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate t...Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.With the aim to facilitate generation of high-quality direct shear test data from replicas,a novel component in the testing procedure is introduced by presenting two parameters for geometric quality assurance.The parameters are derived from surface comparisons of three-dimensional(3D)scanning data of the rock joint and its replicas.The first parameter,smf,captures morphological deviations between the replica and the rock joint surfaces.smf is derived as the standard deviation of the deviations between the coordinate points of the replica and the rock joint.Four sources of errors introduced in the replica manufacturing process employed in this study could be identified.These errors could be minimized,yielding replicas with smf0.06 mm.The second parameter is a vector,VHp100,which describes deviations with respect to the shear direction.It is the projection of the 100 mm long normal vector of the best-fit plane of the replica joint surface to the corresponding plane of the rock joint.VHp100was found to be less than or equal to 0.36 mm in this study.Application of these two geometric quality assurance parameters demonstrates that it is possible to manufacture replicas with high geometric similarity to the rock joint.In a subsequent paper(part 2),smf and VHp100 are incorporated in a novel quality assurance method,in which the parameters shall be evaluated prior to direct shear testing.Replicas having parameter values below established thresholds shall have a known and narrow dispersion and imitate the shear mechanical behavior of the rock joint.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
For up-to-date bolted joints, first of all in vehicles, high strength bolts of 10.9 or even 12.9 are used, which are preloaded up to 90% or even 100% of the yield strength. The primary aim of this high degree utilizat...For up-to-date bolted joints, first of all in vehicles, high strength bolts of 10.9 or even 12.9 are used, which are preloaded up to 90% or even 100% of the yield strength. The primary aim of this high degree utilization is the weight reduction. For the analytic dimensioning of bolted joints, the VDI 2230 Richtlinien German standard [1] provides support. However, the analytic model can mostly consider the true structural characteristics only in a limited way. The analytic modeling is especially uncertain in case of multiple bolted joints when the load distribution among the bolts depends reasonably upon the elastic deformation of the participating elements in the joints over the geometry of the bolted joint. The first part of this paper deals with the problems of numerical modeling and stress analysis, respectively specifying the analytic dimensioning procedure by applying elastic or rather elastic-plastic material law. The error magnitude in bolted joint calculation was examined in case of omitting the existing threaded connection—between the bolt and the nut—in order to simplify the model. The second part of the paper deals with the dimensioning of stands and cantilevers’ multi-bolt fixing problems, first of all, with the load distribution among the bolts keeping in view the analysis of the local slipping relations. For demonstrating the above technique, an elaborated numeric procedure is presented for a four-bolted cantilever, having bolted joints pre-tightened to the yield strength.展开更多
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit...To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.展开更多
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho...Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.展开更多
In this paper, we reinvestigate the faithful quantum teleportation of an arbitrary two-qubit state by a multi-particle channel with multi-particle joint measurements. The relationship between multi-particle quantum ch...In this paper, we reinvestigate the faithful quantum teleportation of an arbitrary two-qubit state by a multi-particle channel with multi-particle joint measurements. The relationship between multi-particle quantum channel and the multi-particle joint measurement bases has been found. In addition, we show how to construct the multi-particle joint measurement bases.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
BACKGROUND There is concern regarding potential long-term cardiotoxicity with systemic distribution of metals in total joint arthroplasty(TJA)patients.AIM To determine the association of commonly used implant metals w...BACKGROUND There is concern regarding potential long-term cardiotoxicity with systemic distribution of metals in total joint arthroplasty(TJA)patients.AIM To determine the association of commonly used implant metals with echocardiographic measures in TJA patients.METHODS The study comprised 110 TJA patients who had a recent history of high chromium,cobalt or titanium concentrations.Patients underwent two-dimensional,three-dimensional,Doppler and speckle-strain transthoracic echocardiography and a blood draw to measure metal concentrations.Age and sex-adjusted linear and logistic regression models were used to examine the association of metal concentrations(exposure)with echocardiographic measures(outcome).RESULTS Higher cobalt concentrations were associated with increased left ventricular end-diastolic volume(estimate 5.09;95%CI:0.02-10.17)as well as left atrial and right ventricular dilation,particularly in men but no changes in cardiac function.Higher titanium concentrations were associated with a reduction in left ventricle global longitudinal strain(estimate 0.38;95%CI:0.70 to 0.06)and cardiac index(estimate 0.08;95%CI,-0.15 to-0.01).CONCLUSION Elevated cobalt and titanium concentrations may be associated with structural and functional cardiac changes in some patients.Longitudinal studies are warranted to better understand the systemic effects of metals in TJA patients.展开更多
A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states ...A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.展开更多
In this paper, we present a novel scheme for hierarchical joint remote state preparation(HJRSP) in a deterministic manner, where two senders can jointly and remotely prepare an arbitrary single-qubit at three receiv...In this paper, we present a novel scheme for hierarchical joint remote state preparation(HJRSP) in a deterministic manner, where two senders can jointly and remotely prepare an arbitrary single-qubit at three receivers' port. A six-particle partially entangled state is pre-shared as the quantum channel. There is a hierarchy among the receivers concerning their powers to reconstruct the target state. Due to various unitary operations and projective measurements, the unit success probability can always be achieved irrespective of the parameters of the pre-shared partially entangled state.展开更多
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ...A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.展开更多
Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys...Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.展开更多
基金China State Railway Group Co.,Ltd.has supported this work as a critical project(Grant No.:N2022Z020).
文摘Purpose-Following the regional restructuring,the number of joint-venture railway companies in which the Group participates has significantly increased.This paper aims to explore the challenges faced by China Railway Group in managing participation in joint-venture railway companies.The study seeks to propose specific approaches to ensure the effective management of these companies,thereby maximizing the benefits of the regional restructuring and supporting the development of a strong transportation country and a modern infrastructure system.Design/methodology/approach-Based on the change in the shareholding relationship between China Railway Group and the joint-venture railway companies,and considering the current situation of the regional restructuring of these companies,as well as the insights from existing literature and typical case studies,this paper proposes some specific paths for effective management of joint-stock railway companies which China Railway Group participated in.Findings-The problems in participation management are the unclear dual leadership role of the party committee,the lack of discourse power,the lack of synergy between shareholders,the increasing risk of sustainable operation of the loss-making companies and the role of dispatched personnel is not fully played.Based on the theories,combined with the existing research and practical cases,the paper proposed specific approaches,such as perfecting top-level system design,maintaining the discourse power,carrying out differentiated management,arranging personnel rationally,arranging shareholders synergy,and innovating methods to provide references for China Railway Group’s subsequent management of joint venture railway companies.Originality/value-This paper contributes to the existing literature by providing a comprehensive analysis of the challenges faced by China Railway Group in managing participation in joint-venture railway companies following the regional restructuring.The study offers novel insights and practical recommendations for addressing these challenges.The findings can serve as valuable references for China Railway Group’s subsequent management of joint-venture railway companies which participated in,as well as for other stateowned enterprises facing similar challenges in managing their joint ventures.
基金Guangxi Key Laboratory of Financial Big Data Fund Project(Guikejizi[2021]No.5)Research on the Innovation of Teaching Models for Foreign Professional Courses in China-UK Joint Education Under the Background of Internationalization-Taking Guangxi University of Finance and Economics as an Example(2023XJJG26)Exploration and Practice of Digital Media Technology Talent Training Models in the Context of New Productive Forces(XGK202423)。
文摘In the context of internationalization,China-UK Joint Education Programs are receiving increasing attention from universities.Based on the difficulties faced in China-UK Joint Education Program,this paper adopts a questionnaire survey method to study the learning effectiveness of students majoring in digital media technology in the China-UK Joint Education Program at Guangxi University of Finance and Economics,focusing on four aspects:learning materials,learning content,teacher conditions,and student learning outcomes.The research analysis in this paper not only provides strong support for the construction of China-UK Joint Education Program but also offers references for other China-UK Joint Education Programs.
基金Projects (50832004, 51202194) supported by National Natural Science Foundation of ChinaProject (11-BZ-2012) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China+1 种基金Project (T201107) supported by Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, ChinaProject (B08040) supported by 111 Project of China
文摘A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(201206370124)supported by the China Scholarship Council,China
文摘The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.
基金supported by the National Basic Research Programof China(2014CB046905)the Fundamental Research Funds for the Central Universities(China University of Mining and Technology)(2014YC10)
文摘A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
基金Project supported by the National Natural Science Foundation of China (No. 50278088)the Program for New Century Excellent Talents in University (No. NCET-04-0525), China
文摘Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe failure must include both the pipe deterioration model and mechanics model. Winkler pipe-soil interaction (WPSI), an analytical mechanics model developed by Rajani and Tesfamariam (2004), takes external and internal loads, temperature changes, loss of bedding support, and the elastoplastic effect of soil into consideration. Based on the WPSI model, a method to evaluate the elastic and plastic areas was proposed in the present study. An FEM model based on pipe-soil interaction (PSI) element was used to verify the analytical model. Sensitivity analyses indicate that the soft soil, long pipe and high temperature induced the axial plastic deformation more likely, which, however, may not occur in normal scenarios. The soft soil, pipes in small diameters, long unsupported bedding are prone to form flexural plastic area. The results show that the pipes subjected to the same loads have smaller stresses in the elastoplastic analysis than elastic analysis. The difference, however, is slight.
基金The project supported by the National Natural Science Foundation of China (59705008)
文摘In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.
文摘Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.With the aim to facilitate generation of high-quality direct shear test data from replicas,a novel component in the testing procedure is introduced by presenting two parameters for geometric quality assurance.The parameters are derived from surface comparisons of three-dimensional(3D)scanning data of the rock joint and its replicas.The first parameter,smf,captures morphological deviations between the replica and the rock joint surfaces.smf is derived as the standard deviation of the deviations between the coordinate points of the replica and the rock joint.Four sources of errors introduced in the replica manufacturing process employed in this study could be identified.These errors could be minimized,yielding replicas with smf0.06 mm.The second parameter is a vector,VHp100,which describes deviations with respect to the shear direction.It is the projection of the 100 mm long normal vector of the best-fit plane of the replica joint surface to the corresponding plane of the rock joint.VHp100was found to be less than or equal to 0.36 mm in this study.Application of these two geometric quality assurance parameters demonstrates that it is possible to manufacture replicas with high geometric similarity to the rock joint.In a subsequent paper(part 2),smf and VHp100 are incorporated in a novel quality assurance method,in which the parameters shall be evaluated prior to direct shear testing.Replicas having parameter values below established thresholds shall have a known and narrow dispersion and imitate the shear mechanical behavior of the rock joint.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
文摘For up-to-date bolted joints, first of all in vehicles, high strength bolts of 10.9 or even 12.9 are used, which are preloaded up to 90% or even 100% of the yield strength. The primary aim of this high degree utilization is the weight reduction. For the analytic dimensioning of bolted joints, the VDI 2230 Richtlinien German standard [1] provides support. However, the analytic model can mostly consider the true structural characteristics only in a limited way. The analytic modeling is especially uncertain in case of multiple bolted joints when the load distribution among the bolts depends reasonably upon the elastic deformation of the participating elements in the joints over the geometry of the bolted joint. The first part of this paper deals with the problems of numerical modeling and stress analysis, respectively specifying the analytic dimensioning procedure by applying elastic or rather elastic-plastic material law. The error magnitude in bolted joint calculation was examined in case of omitting the existing threaded connection—between the bolt and the nut—in order to simplify the model. The second part of the paper deals with the dimensioning of stands and cantilevers’ multi-bolt fixing problems, first of all, with the load distribution among the bolts keeping in view the analysis of the local slipping relations. For demonstrating the above technique, an elaborated numeric procedure is presented for a four-bolted cantilever, having bolted joints pre-tightened to the yield strength.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.
基金National Natural Science Foundation of China No.51905068Natural Science Foundation of Liaoning Province No.2020-HYLH-24The open research fund from the State Key Laboratory of Rolling and Automation,Northeastern University No.2020RALKFKT012。
文摘Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.
基金National Natural Science Foundation of China under Grant Nos.60578014 and 10547106
文摘In this paper, we reinvestigate the faithful quantum teleportation of an arbitrary two-qubit state by a multi-particle channel with multi-particle joint measurements. The relationship between multi-particle quantum channel and the multi-particle joint measurement bases has been found. In addition, we show how to construct the multi-particle joint measurement bases.
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金Supported by The National Institutes of Health,No.R01HL147155 and No.R01AG060920.
文摘BACKGROUND There is concern regarding potential long-term cardiotoxicity with systemic distribution of metals in total joint arthroplasty(TJA)patients.AIM To determine the association of commonly used implant metals with echocardiographic measures in TJA patients.METHODS The study comprised 110 TJA patients who had a recent history of high chromium,cobalt or titanium concentrations.Patients underwent two-dimensional,three-dimensional,Doppler and speckle-strain transthoracic echocardiography and a blood draw to measure metal concentrations.Age and sex-adjusted linear and logistic regression models were used to examine the association of metal concentrations(exposure)with echocardiographic measures(outcome).RESULTS Higher cobalt concentrations were associated with increased left ventricular end-diastolic volume(estimate 5.09;95%CI:0.02-10.17)as well as left atrial and right ventricular dilation,particularly in men but no changes in cardiac function.Higher titanium concentrations were associated with a reduction in left ventricle global longitudinal strain(estimate 0.38;95%CI:0.70 to 0.06)and cardiac index(estimate 0.08;95%CI,-0.15 to-0.01).CONCLUSION Elevated cobalt and titanium concentrations may be associated with structural and functional cardiac changes in some patients.Longitudinal studies are warranted to better understand the systemic effects of metals in TJA patients.
基金supported by the National Natural Science Foundation of China under Grants No. 61100205, No. 61100208the Project of the Fundamental Research Funds for the Central Universities under Grant No. 2013RC0307
文摘A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61701285 and 61701284)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,China(Grant No.2017RCJJ070)China Postdoctoral Science Foundation Funded Project(Grant No.2017M622233)
文摘In this paper, we present a novel scheme for hierarchical joint remote state preparation(HJRSP) in a deterministic manner, where two senders can jointly and remotely prepare an arbitrary single-qubit at three receivers' port. A six-particle partially entangled state is pre-shared as the quantum channel. There is a hierarchy among the receivers concerning their powers to reconstruct the target state. Due to various unitary operations and projective measurements, the unit success probability can always be achieved irrespective of the parameters of the pre-shared partially entangled state.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50478027)
文摘A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.
文摘Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.