In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinit...In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinite dimensional Hilbert suaces is inner.展开更多
Using fixed point methods, we prove the Hyers–Ulam–Rassias stability and superstability of Jordan homomorphisms (Jordan *-homomorphisms), and Jordan derivations (Jordan *-derivations) on Banach algebras (C*-...Using fixed point methods, we prove the Hyers–Ulam–Rassias stability and superstability of Jordan homomorphisms (Jordan *-homomorphisms), and Jordan derivations (Jordan *-derivations) on Banach algebras (C*-algebras) for the generalized Jensen–type functional equationwhere r is a fixed positive real number in (1, ∞).展开更多
In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B...Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B = P, here A o B = AB + BA is the usual Jordan product. In this article, we show that if ,A = AlgAN is a Hilbert space nest Mgebra and M = B(H), or A =M= B(X), then, a linear mapδ: A→M is Jordan derivable at a nontrivial projection P ∈ N or an arbitrary but fixed nontrivial idempotent P∈ B(X) if and only if it is a derivation. New equivalent characterization of derivations on these operator algebras was obtained.展开更多
Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and t...Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and that every local Jordan automorphism of Tn(R) is a Jordan automorphism. As applications, we show that local derivations and local automorphisms of Tn (R) are inner.展开更多
In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account ...In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account of the problem of Jacobson radical ranges for such functional inequality.展开更多
In this paper, the structure of Jordan higher derivable maps on triangular algebras by commutative zero products is given. As an application, the form of Jordan higher derivable maps of nest algebras by commutative ze...In this paper, the structure of Jordan higher derivable maps on triangular algebras by commutative zero products is given. As an application, the form of Jordan higher derivable maps of nest algebras by commutative zero products is obtained.展开更多
Let T(n, R) be the Lie algebra consisting of all n× n upper triangular matrices over a commutative ring R with identity 1 and M be a 2-torsion free unital T(n, R)-bimodule. In this paper, we prove that every ...Let T(n, R) be the Lie algebra consisting of all n× n upper triangular matrices over a commutative ring R with identity 1 and M be a 2-torsion free unital T(n, R)-bimodule. In this paper, we prove that every Lie triple derivation d : T(n, R) →M is the sum of a Jordan derivation and a central Lie triple derivation.展开更多
Let A be a noncommutative Banach algebra.Suppose there exists a continuous linear Jordan derivation D:A→A such that [D(x),x]D(x)[D(x),x]∈ rad(A) for all x ∈ A.In this case, D(A)rad(A).
Let n be a fixed integer, let R be an (n + 1)!-torsion free semiprime ring with the identity element and let F : R → R be an additive mapping satisfying the relation F(xn+2) ∑+n+i=1xi-1F(x)2xn+1-i -∑xnF...Let n be a fixed integer, let R be an (n + 1)!-torsion free semiprime ring with the identity element and let F : R → R be an additive mapping satisfying the relation F(xn+2) ∑+n+i=1xi-1F(x)2xn+1-i -∑xnF(x)xn+1-i for all x 6 R. In this case, we prove that F is of the form 2F(x) = D(x) + ax + xa for all x ∈ R, where D : R → R is a derivation and a 6 R is some fixed element.展开更多
文摘In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinite dimensional Hilbert suaces is inner.
文摘Using fixed point methods, we prove the Hyers–Ulam–Rassias stability and superstability of Jordan homomorphisms (Jordan *-homomorphisms), and Jordan derivations (Jordan *-derivations) on Banach algebras (C*-algebras) for the generalized Jensen–type functional equationwhere r is a fixed positive real number in (1, ∞).
基金Fundamental Research Funds (N110423007) for the Central Universities
文摘In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
基金Supported by National Natural Foundation of China(11001194)Provincial International Cooperation Project of Shanxi(2014081027-2)
文摘Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B = P, here A o B = AB + BA is the usual Jordan product. In this article, we show that if ,A = AlgAN is a Hilbert space nest Mgebra and M = B(H), or A =M= B(X), then, a linear mapδ: A→M is Jordan derivable at a nontrivial projection P ∈ N or an arbitrary but fixed nontrivial idempotent P∈ B(X) if and only if it is a derivation. New equivalent characterization of derivations on these operator algebras was obtained.
基金Supported by the Doctor Foundation of Henan Polytechnic University (Grant No. B2010-93)
文摘Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and that every local Jordan automorphism of Tn(R) is a Jordan automorphism. As applications, we show that local derivations and local automorphisms of Tn (R) are inner.
基金Supported by Research Fund for the Doctoral Program of Higher Education of China(Grant No.20101402110012)Tian Yuan Foundation of China(Grant No.11026161)Foundation of Shanxi University
文摘Let L be a J-subspace lattice on a Banach space X and Alg/2 the associated J-subspace lattice
基金supported by Korea Research Foundation Grant funded by the Korean Government,KRF-2008-531-C00008
文摘In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account of the problem of Jacobson radical ranges for such functional inequality.
基金Supported by National Natural Science Foundation of China(Grant Nos.11471199 and 11371233)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110202110002)the Innovation Funds of Graduate Programs of Shaanxi Normal University(Grant No.2015CXB007)
文摘In this paper, the structure of Jordan higher derivable maps on triangular algebras by commutative zero products is given. As an application, the form of Jordan higher derivable maps of nest algebras by commutative zero products is obtained.
基金Supported by the National Natural Science Foundation of China (Grant No. 10771027)
文摘Let T(n, R) be the Lie algebra consisting of all n× n upper triangular matrices over a commutative ring R with identity 1 and M be a 2-torsion free unital T(n, R)-bimodule. In this paper, we prove that every Lie triple derivation d : T(n, R) →M is the sum of a Jordan derivation and a central Lie triple derivation.
基金The author has been supported by Kangnung National University,Research Fund,1998
文摘Let A be a noncommutative Banach algebra.Suppose there exists a continuous linear Jordan derivation D:A→A such that [D(x),x]D(x)[D(x),x]∈ rad(A) for all x ∈ A.In this case, D(A)rad(A).
文摘Let n be a fixed integer, let R be an (n + 1)!-torsion free semiprime ring with the identity element and let F : R → R be an additive mapping satisfying the relation F(xn+2) ∑+n+i=1xi-1F(x)2xn+1-i -∑xnF(x)xn+1-i for all x 6 R. In this case, we prove that F is of the form 2F(x) = D(x) + ax + xa for all x ∈ R, where D : R → R is a derivation and a 6 R is some fixed element.