Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) =...Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) = [[Φ(A), Φ(B)]_*, Φ(C)]_*for all A, B, C ∈ A if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.展开更多
In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account ...In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account of the problem of Jacobson radical ranges for such functional inequality.展开更多
Let Tn be the algebra of all n × n complex upper triangular matrices. We give the concrete forms of linear injective maps on Tn which preserve the nonzero idempotency of either products of two matrices or triple ...Let Tn be the algebra of all n × n complex upper triangular matrices. We give the concrete forms of linear injective maps on Tn which preserve the nonzero idempotency of either products of two matrices or triple Jordan products of two matrices.展开更多
基金Supported by Research Fund for the Doctoral Program of Higher Education of China(Grant No.20101402110012)Tian Yuan Foundation of China(Grant No.11026161)Foundation of Shanxi University
文摘Let L be a J-subspace lattice on a Banach space X and Alg/2 the associated J-subspace lattice
基金supported by the National Natural Science Foundation of China(No.11526123,No.11401273)the Natural Science Foundation of Shandong Province of China(No.ZR2015PA010)
文摘Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) = [[Φ(A), Φ(B)]_*, Φ(C)]_*for all A, B, C ∈ A if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.
基金supported by Korea Research Foundation Grant funded by the Korean Government,KRF-2008-531-C00008
文摘In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account of the problem of Jacobson radical ranges for such functional inequality.
基金The NSF (10571114) of Chinathe Natural Science Basic Research Plan (2005A1) of Shaanxi Province of China
文摘Let Tn be the algebra of all n × n complex upper triangular matrices. We give the concrete forms of linear injective maps on Tn which preserve the nonzero idempotency of either products of two matrices or triple Jordan products of two matrices.