Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortice...Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.展开更多
This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of elect...This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of electric double layer, the Navier-Stokes equation of liquid flow, and the liquid-solid coupled heat transfer equation are solved to investigate temperature behaviors of electroosmosis in a two-dimensional microchannel. The feedback effect of temperature variation on liquid properties (dielectric constant, vis- cosity, and thermal and electric conductivities) is taken into account. Numerical results indicate that there exists a heat developing length near the channel inlet where the flow velocity, temperature, pressure, and electric field rapidly vary and then approach to a steady state after the heat developing length, which may occupy a considerable portion of the microchannel in cases of thick chip and high electric field. The liquid temperature of steady state increases with the increase of the applied electric field, channel width, and chip thickness. The temperature on a PDMS wall is higher than that on a glass wall due to the difference of heat conductivities of materials. Temperature variations are found in the both longitudinal and transverse directions of the microchannel. The increase of the temperature on the wall decreases the charge density of the electric double layer. The longitudinal temperature variation induces a pressure gradient and changes the behavior of the electric field in the microchannel. The inflow liquid temperature does not change the liquid temperature of steady state and the heat developing length.展开更多
The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree ...The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P.展开更多
We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
Advanced absorbents must meet the requirements of superior hydrophobic/oleophilic behavior,favorable adsorption efficiency,and high photothermal and Joule heating performance to handle frequent crude oil spills.Howeve...Advanced absorbents must meet the requirements of superior hydrophobic/oleophilic behavior,favorable adsorption efficiency,and high photothermal and Joule heating performance to handle frequent crude oil spills.However,current carbon-based absorbents suffer from poor fire resistance,thus severely limiting their application in harsh environments.Herein,inspired by a bird’s nest,a polymer“welding”strategy is proposed to design a versatile absorbent in which the polymer serves as a“binder”to interconnect discontinuous fibers together to form a 3D welded structure.The continuous conductive networks endow the absorbent with high photothermal and Joule heating effect,thus achieving all-weather adsorption,and improving the adsorption efficiency of crude oil via the self-heating function.Compared with other absorbents,the absorbent prepared via polymer welding technology exhibited preferable comprehensive performance,such as superhydrophobicity,high fire resistance,and high absorption efficiency.Specially,the noninflammable absorbent can restrain the combustion of crude oil,thereby reducing its combustion in case of fire.The versatile absorbent is expected to provide a promising solution for the safe and effi-cient cleanup of crude oil spills in harsh environments.Overall,the unique polymer welding strategy can be developed into a universal strategy for other material systems to expand their applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11572139).
文摘Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.
基金supported by the National Natural Science Foundation of China (Nos.10872076 and 50805059)
文摘This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of electric double layer, the Navier-Stokes equation of liquid flow, and the liquid-solid coupled heat transfer equation are solved to investigate temperature behaviors of electroosmosis in a two-dimensional microchannel. The feedback effect of temperature variation on liquid properties (dielectric constant, vis- cosity, and thermal and electric conductivities) is taken into account. Numerical results indicate that there exists a heat developing length near the channel inlet where the flow velocity, temperature, pressure, and electric field rapidly vary and then approach to a steady state after the heat developing length, which may occupy a considerable portion of the microchannel in cases of thick chip and high electric field. The liquid temperature of steady state increases with the increase of the applied electric field, channel width, and chip thickness. The temperature on a PDMS wall is higher than that on a glass wall due to the difference of heat conductivities of materials. Temperature variations are found in the both longitudinal and transverse directions of the microchannel. The increase of the temperature on the wall decreases the charge density of the electric double layer. The longitudinal temperature variation induces a pressure gradient and changes the behavior of the electric field in the microchannel. The inflow liquid temperature does not change the liquid temperature of steady state and the heat developing length.
基金the National Natural Science Foundation of China(No.41272177)the Henan Polytechnic University Doctor Foundation(No.WS2013A11)
文摘The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P.
文摘We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
基金financially supported by the National Natu-ral Science Foundation of China(Nos.51973167 and 52273041)the State Key Laboratory of Bio-Fibers and Eco-Textiles(Qing-dao University)(No.KFKT202122)+3 种基金Outstanding Young and Middle-aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province(No.T2022017)the Natu-ral Science Outstanding Youth Foundation of Hubei Province(No.2022CFA081)the Natural Science Foundation of Hubei Province of China(No.2022CFB997)the National Local Joint Labora-tory for Advanced Textile Processing and Clean Production(No.FX2022004).
文摘Advanced absorbents must meet the requirements of superior hydrophobic/oleophilic behavior,favorable adsorption efficiency,and high photothermal and Joule heating performance to handle frequent crude oil spills.However,current carbon-based absorbents suffer from poor fire resistance,thus severely limiting their application in harsh environments.Herein,inspired by a bird’s nest,a polymer“welding”strategy is proposed to design a versatile absorbent in which the polymer serves as a“binder”to interconnect discontinuous fibers together to form a 3D welded structure.The continuous conductive networks endow the absorbent with high photothermal and Joule heating effect,thus achieving all-weather adsorption,and improving the adsorption efficiency of crude oil via the self-heating function.Compared with other absorbents,the absorbent prepared via polymer welding technology exhibited preferable comprehensive performance,such as superhydrophobicity,high fire resistance,and high absorption efficiency.Specially,the noninflammable absorbent can restrain the combustion of crude oil,thereby reducing its combustion in case of fire.The versatile absorbent is expected to provide a promising solution for the safe and effi-cient cleanup of crude oil spills in harsh environments.Overall,the unique polymer welding strategy can be developed into a universal strategy for other material systems to expand their applications.