Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TR...Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature,with further validation of signature in real world samples from our hospital treated patient samples.Kaplan-Meier(K-M)survival analysis and receiver operating characteristic(ROC)curves were employed to evaluate this gene signature’s predictive accuracy and robustness in both training and testing cohorts,respectively.Additionally,the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature’s immune infiltration landscape and underlying functional implications.The support vector machine algorithm was applied to evaluate the signature’s potential in predicting chemotherapy outcomes.The findings unveiled a novel three TRP channels-related gene signature(MCOLN1,TRPM5,and TRPV4)in colon adenocarcinoma(COAD).The ROC and K-M survival curves in the training dataset(AUC=0.761;p=1.58e-05)and testing dataset(AUC=0.699;p=0.004)showed the signature’s robust predictive capability for the overall survival of COAD patients.Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration,especially an increased presence of M2 macrophages,in high-risk group patients compared to their low-risk counterparts.High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy,evident through increased CD86 and PD-1 expression profiles.Moreover,the TRPM5 gene within the signature was highly expressed in the chemoresistance group(p=0.00095)and associated with poor prognosis(p=0.036)in COAD patients,highlighting its role as a hub gene of chemoresistance.Ultimately,this signature emerged as an independent prognosis factor for COAD patients(p=6.48e-06)and expression of model gene are validated by public data and real-world patients.Overall,this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.展开更多
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-l...We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.展开更多
Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow,...Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow, tributary morphology, and topography data determined specific power values along the axes studied. The values obtained range from 2.69 to 12.92 W/m2 for Ouémé River and 2.46 to 10.99 W/m2 for Sô River. The resulting water erosion on banks and bottoms is of linear, areolar, or gully and claw types. Lake bathymetry varies from -0.5 to -2.6 m (low flow period) and -1 to -4 m;in the Ouémé, Sô, and Totchè rivers, it varies from -5 m to -7 m, reaching -10 m at the Cotonou channel entrance (flood period). Bathymetric profiles reveal varied “U”, “V” and “Intermediate” bottom morphologies, influenced by erosion/sedimentation processes and human activities. The flow facies identified are lentic in the northern tributaries and lotic in the Cotonou and Totchè canals. Spatial analysis identified nine (09) thematic classes. In 2022, the surface area of the water body has increased from 274 km2 at low water to 280 km2 at high water, whereas in 2010 (a recent year of exceptional flooding), the surface area was 270 km2 at low water and 277 km2 at high water. Significant changes in land use are observed between 2010 and 2022. The floodplain area decreased slightly, from 421 km2 in 2010 (year of exceptional flooding) to 419 km2 in 2022. The evolution of land use shows a progressive expansion of the urban environment to the detriment of the natural environment. In the medium to long term, this trend could threaten the hydromorphological balance and even the existence of this important lagoon ecosystem.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurologic...Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.展开更多
Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on mult...Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.展开更多
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,ther...Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,there is a lack of research on the optimization of the probing process.This study investigates how to optimize correlated parameters to maximize the SKG rate(SKGR)in the time-division duplex(TDD)mode.First,we build a probing model which includes the effects of transmitting power,the probing period,and the dimension of sample vectors.Based on the model,the analytical expression of the SKGR is given.Next,we formulate an optimization problem for maximizing the SKGR and give an algorithm to solve it.We conclude the SKGR monotonically increases as the transmitting power increases.Relevant mathematical proofs are given in this study.From the simulation results,increasing appropriately the probing period and the dimension of the sample vector could increase the SKGR dramatically compared to a yardstick,which indicates the importance of optimizing the parameters related to the channel probing phase.展开更多
With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two...With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.展开更多
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt...We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
Along with the surge of unearthed medical literature and cultural relics in recent years,a network of channels in the system of medical conduit vessels(meridians) during the early Western Han dynasty has become much c...Along with the surge of unearthed medical literature and cultural relics in recent years,a network of channels in the system of medical conduit vessels(meridians) during the early Western Han dynasty has become much clearer gradually.In it,the increasing number of channel branches,network vessels and needle insertion holes(acupoints) is an important feature of the development of channel medicine during the Western Han dynasty.This is not only a reflection of the expanding requirements of the theoretical system of the main trunk channels and other vessels,but also an inevitable result of the continuous enrichment and accumulation of clinical experience.This article integrates the information about channel branches,network vessels,inscriptions,dots and further relics on the Tianhui(天回) Lacquered Meridian Figurine to compare the unearthed literature of the channel genre with the transmitted classical literature about acupuncture.The “Heart-Regulated Channel” in Medical Manuscripts on Bamboo Slips from Tianhui(《天回医简》) serves as an example to explain the occurrence,development and changes of the channel branches and network vessels in the early system of medical channels.展开更多
The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region conta...The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.展开更多
The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel a...The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u...In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to ...The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.展开更多
基金the Ethics Committee of University Magdeburg(Ethical code:33/0119.03.2001).
文摘Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature,with further validation of signature in real world samples from our hospital treated patient samples.Kaplan-Meier(K-M)survival analysis and receiver operating characteristic(ROC)curves were employed to evaluate this gene signature’s predictive accuracy and robustness in both training and testing cohorts,respectively.Additionally,the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature’s immune infiltration landscape and underlying functional implications.The support vector machine algorithm was applied to evaluate the signature’s potential in predicting chemotherapy outcomes.The findings unveiled a novel three TRP channels-related gene signature(MCOLN1,TRPM5,and TRPV4)in colon adenocarcinoma(COAD).The ROC and K-M survival curves in the training dataset(AUC=0.761;p=1.58e-05)and testing dataset(AUC=0.699;p=0.004)showed the signature’s robust predictive capability for the overall survival of COAD patients.Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration,especially an increased presence of M2 macrophages,in high-risk group patients compared to their low-risk counterparts.High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy,evident through increased CD86 and PD-1 expression profiles.Moreover,the TRPM5 gene within the signature was highly expressed in the chemoresistance group(p=0.00095)and associated with poor prognosis(p=0.036)in COAD patients,highlighting its role as a hub gene of chemoresistance.Ultimately,this signature emerged as an independent prognosis factor for COAD patients(p=6.48e-06)and expression of model gene are validated by public data and real-world patients.Overall,this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61877054,12031004,and 12271474).
文摘We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
文摘Based on 2022 and 2023 hydrometric data and satellite images (Sentinel 2022, SPOT 2010), this study aims to present the Nokoué Lake and its channels’ re-cent hydromorphological characteristics. Integrating flow, tributary morphology, and topography data determined specific power values along the axes studied. The values obtained range from 2.69 to 12.92 W/m2 for Ouémé River and 2.46 to 10.99 W/m2 for Sô River. The resulting water erosion on banks and bottoms is of linear, areolar, or gully and claw types. Lake bathymetry varies from -0.5 to -2.6 m (low flow period) and -1 to -4 m;in the Ouémé, Sô, and Totchè rivers, it varies from -5 m to -7 m, reaching -10 m at the Cotonou channel entrance (flood period). Bathymetric profiles reveal varied “U”, “V” and “Intermediate” bottom morphologies, influenced by erosion/sedimentation processes and human activities. The flow facies identified are lentic in the northern tributaries and lotic in the Cotonou and Totchè canals. Spatial analysis identified nine (09) thematic classes. In 2022, the surface area of the water body has increased from 274 km2 at low water to 280 km2 at high water, whereas in 2010 (a recent year of exceptional flooding), the surface area was 270 km2 at low water and 277 km2 at high water. Significant changes in land use are observed between 2010 and 2022. The floodplain area decreased slightly, from 421 km2 in 2010 (year of exceptional flooding) to 419 km2 in 2022. The evolution of land use shows a progressive expansion of the urban environment to the detriment of the natural environment. In the medium to long term, this trend could threaten the hydromorphological balance and even the existence of this important lagoon ecosystem.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
基金NJ Governor’s Council for Medical Research and Treatment of Autism predoctoral fellowship (CAUT23AFP015) to ABNational Science Foundation grant (2030348) to FS。
文摘Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.
基金supported in part by National Key R&D Project of China (2023YFB2906201)the National Natural Science Foundation of China (62222111, 62125108 and 62431015)the Fundamental Research Funds for the Central Universities。
文摘Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
基金supported in part by the national natural science foundation of China (NSFC) under Grant61871193in part by the R&D Program of key science and technology fields in Guangdong province under Grant 2019B090912001in part by the Guangzhou Key Field R&D Program under Grant 202206030005
文摘Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,there is a lack of research on the optimization of the probing process.This study investigates how to optimize correlated parameters to maximize the SKG rate(SKGR)in the time-division duplex(TDD)mode.First,we build a probing model which includes the effects of transmitting power,the probing period,and the dimension of sample vectors.Based on the model,the analytical expression of the SKGR is given.Next,we formulate an optimization problem for maximizing the SKGR and give an algorithm to solve it.We conclude the SKGR monotonically increases as the transmitting power increases.Relevant mathematical proofs are given in this study.From the simulation results,increasing appropriately the probing period and the dimension of the sample vector could increase the SKGR dramatically compared to a yardstick,which indicates the importance of optimizing the parameters related to the channel probing phase.
基金supported by the National Natural Science Foundation of China(Grants No.U1836104,61772281,61702235,61801073,61931004,62072250).
文摘With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.
基金supported in part by the National Key R&D Project of China under Grant 2020YFA0712300National Natural Science Foundation of China under Grant NSFC-62231022,12031011supported in part by the NSF of China under Grant 62125108。
文摘We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).
基金one of the stage results of the Science and Technology Innovation Project (CI2021A00413) of the China Academy of Traditional Chinese Medicine。
文摘Along with the surge of unearthed medical literature and cultural relics in recent years,a network of channels in the system of medical conduit vessels(meridians) during the early Western Han dynasty has become much clearer gradually.In it,the increasing number of channel branches,network vessels and needle insertion holes(acupoints) is an important feature of the development of channel medicine during the Western Han dynasty.This is not only a reflection of the expanding requirements of the theoretical system of the main trunk channels and other vessels,but also an inevitable result of the continuous enrichment and accumulation of clinical experience.This article integrates the information about channel branches,network vessels,inscriptions,dots and further relics on the Tianhui(天回) Lacquered Meridian Figurine to compare the unearthed literature of the channel genre with the transmitted classical literature about acupuncture.The “Heart-Regulated Channel” in Medical Manuscripts on Bamboo Slips from Tianhui(《天回医简》) serves as an example to explain the occurrence,development and changes of the channel branches and network vessels in the early system of medical channels.
基金Supported by the Natural Science Foundation of Guangxi Province(Nos.2023 GXNSFAA 026503,2018 GXNSFBA281201)the Guangxi Key Research and Development Program(No.GuikeAB21196030)+3 种基金the Marine Science Guangxi First-Class Subject,Beibu Gulf University(No.DRC002)the Scientific Research and Technology Development Plan Project of Qinzhou(Nos.202014842,20223637)the Science and Technology Major Project of Guangxi Province(No.AA17204095-10)the Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation,Beibu Gulf University(Nos.2020ZB09,2020ZB04)。
文摘The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-62)the Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01)Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence(LCNBI)and ZJLab,and the National Natural Science Foundation of China(Grant No.12247101).
文摘The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金supported by the Key Research and Development Program of China(No.2022YFC3005401)Key Research and Development Program of China,Yunnan Province(No.202203AA080009,202202AF080003)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0482).
文摘In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
基金supported by the National Natural Science Foundation of China(61872006)Scientific Research Activities Foundation of Academic and Technical Leaders and Reserve Candidates in Anhui Province(2020H233)+2 种基金Top-notch Discipline(specialty)Talents Foundation in Colleges and Universities of Anhui Province(gxbj2020057)the Startup Foundation for Introducing Talent of NUISTby Institutional Fund Projects from Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia(IFPDP-216-22)。
文摘The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.