期刊文献+
共找到2,278篇文章
< 1 2 114 >
每页显示 20 50 100
基于密文KNN检索的室内定位隐私保护算法 被引量:1
1
作者 欧锦添 乐燕芬 施伟斌 《数据采集与处理》 CSCD 北大核心 2024年第2期456-470,共15页
在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于... 在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。 展开更多
关键词 隐私保护 指纹定位 密文k-近邻检索 布隆滤波器 WIFI
下载PDF
基于AKNN异常检验与ADPC聚类的低压台区拓扑识别方法 被引量:3
2
作者 史子轶 夏向阳 +3 位作者 刘佳斌 谷阳洋 王玉龙 洪佳瑶 《中国电力》 CSCD 北大核心 2024年第5期168-177,共10页
低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density pea... 低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。 展开更多
关键词 低压台区 户变关系 相位识别 自适应k近邻 自适应密度峰值
下载PDF
坝肩岩体质量LDA-KNN分类模型 被引量:1
3
作者 荀鹏 李娟 +2 位作者 魏玉峰 李常虎 范文东 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期281-290,302,共11页
工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出... 工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出发,选择岩体完整性系数(K v)、结构面间距(D)、岩石质量指标(RQD)等合适的评价指标,通过引入LDA(Linear Discriminant Analysis)降维方法和K近邻分析(K-Nearest-Neighbor,KNN)相结合的多分类模型,实现了岩体的非线性分级预测。通过定性定量相结合实现了岩体多因素,多指标的综合分级,并解决了多指标判断时信息冗余,复杂程度高的问题。与其他判别方案相比较,模型得出的结果准确率高,符合工程实际,减少了人为因素的影响,体现出较强的预测判别能力。该研究为水电站大坝坝肩处的平硐岩体质量划分提出了一种可行的预测方案。 展开更多
关键词 岩体结构 岩体质量分级 线性降维 k近邻算法 分类模型
下载PDF
基于IKNN和LOF的变压器回复电压数据清洗方法研究 被引量:1
4
作者 陈啸轩 邹阳 +3 位作者 翁祖辰 林锦茄 林昕亮 张云霄 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期92-100,共9页
基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近... 基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近邻(IKNN)的回复电压数据清洗方法。首先,选取回复电压极化谱的回复电压极大值Urmax、初始斜率Sr与主时间常数tcdom作为老化特征参量,并基于LOF算法对非标准极化谱中的异常特征量数据进行识别与筛除。其次,利用模糊C均值(FCM)聚类算法减小噪声点对KNN算法的干扰,并通过加权欧氏距离标度突出各特征量间的关联性,进而构建出基于IKNN的数据填补模型架构以实现特征缺失数据的填补。最后,代入多组实测数据验证所提数据清洗方法的实效性。结果表明,数据清洗后的状态评估准确率相较于原有数据上升了50%左右,有效提高了变压器回复电压数据质量,为准确感知变压器运行状况奠定坚实的基础。 展开更多
关键词 油纸绝缘 特征数据清洗 局部离群因子算法 回复电压极化谱 改进k最近邻算法
下载PDF
应用非线性KNN数据搜索的三维叠前自由表面多次波预测
5
作者 谢飞 朱成宏 +1 位作者 高鸿 徐蔚亚 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期424-432,共9页
自由表面多次波预测(SRMP)是自由表面多次波消除(SRME)以及成像的重要环节。SRME技术尽管有效,但理论上需要规则而密集的地震数据采集方式。然而实际炮点、检波点空间分布稀疏,地震数据不能满足SRME理论要求,常规的做法是在SRME之前将... 自由表面多次波预测(SRMP)是自由表面多次波消除(SRME)以及成像的重要环节。SRME技术尽管有效,但理论上需要规则而密集的地震数据采集方式。然而实际炮点、检波点空间分布稀疏,地震数据不能满足SRME理论要求,常规的做法是在SRME之前将地震数据规则化。为了避免数据规则化环节,首先建立索引数据树管理三维叠前地震数据,并采用基于树形数据结构的非线性K近邻算法(KNN)从地震数据中实时搜索两道近似地震数据;然后利用动校—反动校消除实时搜索得到的近似地震道与实际地震道之间的旅行时误差;由以上两步获得单道孔径内任意向下反射点(DRP)所需要的两道地震数据用于SRMP。单道孔径内任意DRP均可由SRMP预测对应的多次波模型道,叠加所有DRP对应的预测结果可获得该道稳定的多次波模型数据。将该方法用于扩展的三维Pluto模型数据,结果表明该方法能有效预测三维自由表面多次波,从而保证高质量的自由表面多次波衰减结果。实际地震数据的应用证明了方法的实用性。 展开更多
关键词 自由表面多次波 预测 消除 索引数据树 非线性k近邻(knn)算法
下载PDF
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别
6
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 主成分分析(PCA) 核主成分分析(kernel-PCA) k-近邻算法(knn) 分类识别
下载PDF
基于KNN算法的教学质量评价模型建立
7
作者 张晓东 张晓晓 《宁德师范学院学报(自然科学版)》 2024年第3期324-329,共6页
针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模... 针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模型.模型以专家数据为样本,评价精度高,评价结果具有较高的可靠性,能根据相关指标快速产生评价等级,提高了教学质量评价效率,使教学质量评价更加客观全面. 展开更多
关键词 教学质量评价 k-最近邻(knn)算法 交叉验证
下载PDF
基于PCA-BOA-KNN模型的水下爆炸舰船结构破损评估
8
作者 梁潇帝 刘寅东 《中国舰船研究》 CSCD 北大核心 2024年第3期150-157,共8页
[目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速... [目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速度峰值、位移峰值、应力峰值和超压峰值进行降维处理,得到2个本征特征量;最后,将由主成分分析法得到的结果代入贝叶斯网络优化(BOA)的KNN模型,通过建立的破口预报模型,预测一组工况下舰船不同剖面处的破口情况。[结果]结果显示,通过主成分分析法提取的前2个因子的累计贡献率为85.165%,这2个因子可代表5个特征量的主要信息;基于PCA-BOAKNN模型的破口预报结果与仿真结果基本一致。[结论]所提的预报模型方法对舰船结构破口预报有效,对于不同主尺度船体结构破口预报有一定的参考价值。 展开更多
关键词 结构分析 主成分分析 knn算法 水下爆炸
下载PDF
基于改进KNN近邻实体的知识图谱嵌入模型
9
作者 刘婕 孙更新 宾晟 《复杂系统与复杂性科学》 CAS CSCD 北大核心 2024年第2期30-37,共8页
为了更好地表示邻居节点数量较少的罕见实体,提出基于近邻实体的知识图谱嵌入模型NNKGE,使用K近邻算法获得目标实体的近邻实体作为扩展信息,并在此基础上提出RNNKGE模型,使用改进的K近邻算法获得目标实体在关系上的近邻实体,通过图记忆... 为了更好地表示邻居节点数量较少的罕见实体,提出基于近邻实体的知识图谱嵌入模型NNKGE,使用K近邻算法获得目标实体的近邻实体作为扩展信息,并在此基础上提出RNNKGE模型,使用改进的K近邻算法获得目标实体在关系上的近邻实体,通过图记忆网络对其编码生成增强的实体表示。通过对公共数据集上实验结果的分析,以上两个模型在仅使用近邻节点的情况下均实现了对基准模型(CoNE)的性能超越,缓解了数据稀疏问题并改善了知识表示性能。 展开更多
关键词 知识图谱 知识图谱嵌入 邻居节点 k近邻算法 图记忆网络
下载PDF
基于物理加密及KNN算法的核军控核查技术研究
10
作者 何小锁 王圣凯 +2 位作者 窦小敏 路凯凯 何庆华 《核科学与工程》 CAS CSCD 北大核心 2024年第3期660-666,共7页
现阶段军控核查技术所面临的困难在于:核查人员需要在不探测敏感信息的前提下,对被检核武器的真实性给出准确结论。本工作结合物理掩模加密技术与K近邻算法,提出一种可自主加密识别核武器身份信息的核查系统。利用Geant4搭建基于中子裂... 现阶段军控核查技术所面临的困难在于:核查人员需要在不探测敏感信息的前提下,对被检核武器的真实性给出准确结论。本工作结合物理掩模加密技术与K近邻算法,提出一种可自主加密识别核武器身份信息的核查系统。利用Geant4搭建基于中子裂变反应的物理加密辐射指纹采集装置,并通过构造多种作弊情景下的样本建立数据库,同时本研究选择KNN算法建立机器学习模型应用于未知项目的身份认证,并从鲁棒性和安全性两方面量化了该核查系统的可行性。结果表明,当样本同位素丰度由武器级铀变为较低级浓缩铀(235U的丰度由96%变为70%及以下)或者样本几何形状发生细微改变时,该系统对这两种典型的作弊情景具有优良的鉴别能力。该核查方法利用智能算法实现了核武器的自主认证,提高效率的同时有效规避了人工篡改和窥探敏感信息的风险,此外,结合物理掩模加密技术,使得敏感信息从始至终没被测量,在一定程度上降低了通过软件后门等手段作弊的风险。基于物理加密及K近邻算法的核军控核查技术能够在保护被测项目敏感信息的基础上,以较高的准确率和效率鉴定其真实性。 展开更多
关键词 核军控核查 物理加密 knn算法 随机掩模
下载PDF
基于KNN和多特征融合的苹果叶部病害识别检测
11
作者 李亚文 陈月星 呼高翔 《食品与发酵科技》 CAS 2024年第4期25-32,共8页
准确识别与防治苹果叶部病害,能够有效提高苹果的产量与品质。以常见的苹果叶部病害(锈病、黑腐病、黑星病)为研究对象,构建基于KNN和多特征融合的无损检测模型。使用K-means聚类算法分割苹果叶部图像,通过颜色矩、灰度共生矩阵、Hu距... 准确识别与防治苹果叶部病害,能够有效提高苹果的产量与品质。以常见的苹果叶部病害(锈病、黑腐病、黑星病)为研究对象,构建基于KNN和多特征融合的无损检测模型。使用K-means聚类算法分割苹果叶部图像,通过颜色矩、灰度共生矩阵、Hu距分别提取图像的颜色、纹理和形状特征,利用KNN对特征参数进行分类模型训练,能够实现绿色准确识别苹果叶部病害的目的。实验结果表明,以颜色、纹理、形状为单特征检测的苹果叶部病害识别精确率分别为75%、57%、45%,其中颜色特征更加直观,有9个特征量识别率较高,形状特征在进行图像分割时很难确定K点导致识别率低。该研究基于颜色、纹理、形状等多特征融合提取13个特征量,能够准确识别苹果叶部病害,其识别率达84%,为实现绿色农业果园病虫害防治提供技术支持。 展开更多
关键词 k-近邻方法 k-MEANS聚类算法 多特征融合提取 苹果叶部 病害识别
下载PDF
基于KNN-TCN模型的蒸发皿蒸发量预测研究
12
作者 谢育珽 郑翔天 +6 位作者 史俊才 刘萍 申文明 程文飞 李新华 杨静 邢云飞 《人民黄河》 CAS 北大核心 2024年第6期113-118,125,共7页
蒸发量的精确预测对合理开发利用水资源、旱涝变化趋势研究和农作物灌溉用水量的估算具有十分重要的意义。选取我国北方地区14个地面国际交换站观测的7项气象数据,以时间卷积网络(TCN)模型为基础模型,运用K-近邻(KNN)算法对蒸发皿蒸发... 蒸发量的精确预测对合理开发利用水资源、旱涝变化趋势研究和农作物灌溉用水量的估算具有十分重要的意义。选取我国北方地区14个地面国际交换站观测的7项气象数据,以时间卷积网络(TCN)模型为基础模型,运用K-近邻(KNN)算法对蒸发皿蒸发量的空间因素进行筛选,构建KNN-TCN蒸发皿蒸发量预测模型,并利用平均绝对误差、均方根误差和判定系数3项指标对目标站点的蒸发量预测精度进行评价。结果表明:1)KNN-TCN模型预测结果明显优于LSTM模型;2)相比基础TCN模型,KNN-TCN模型预测结果的判定系数提升了2.52%,平均绝对误差、均方根误差分别降低了23.97%、13.06%。 展开更多
关键词 蒸发皿蒸发量 时间卷积网络 k-近邻算法 空间因素
下载PDF
Word2Vec-KNN技术支持下潮流玩具质量检测模型研究
13
作者 吕远智 《计算机应用文摘》 2024年第10期92-94,共3页
随着人们生活水平的提高,越来越多的消费者更加注重所购产品的质量,特别是在儿童玩具方面。质量不合格的玩具产品会给儿童带来诸多影响,包括但不限于安全隐患及对儿童健康产生的影响。然而,工业制造中的产品质量检测报告种类繁多且不易... 随着人们生活水平的提高,越来越多的消费者更加注重所购产品的质量,特别是在儿童玩具方面。质量不合格的玩具产品会给儿童带来诸多影响,包括但不限于安全隐患及对儿童健康产生的影响。然而,工业制造中的产品质量检测报告种类繁多且不易被理解,无法直观体现产品质量。因此,文章提出了一种基于Word2Vec与K最近邻分类算法相结合的产品质量评估模型。该模型能够通过产品质量报告对某玩具进行评估,从而判断其质量。实验结果表明,在数据集尺寸达到900时,K均值聚类算法模型、局部加权最近邻算法模型和混合模型算法模型的准确率分别为0.84,0.91与0.96,损失函数值分别为0.07,0.05及0.03,证明所提模型能够对玩具产品进行准确评估,从而为消费者和质量监管部门提供一定的决策支持。 展开更多
关键词 产品质量评估 k最近邻 Word2Vec 大数据
下载PDF
基于投票加权GS-KNN的离心风机故障诊断
14
作者 曾学文 陈高超 +2 位作者 付名江 邵峰 伍仁杰 《节能》 2024年第1期47-50,共4页
风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障... 风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障诊断模型,利用网格搜索完成k值的选取,基于前k个近邻构建与距离值呈负相关的权值投票公式,依据投票得分情况进行故障诊断。使用投票加权GS-KNN模型对离心风机常见的9种运行状态进行故障诊断,拟合k值与准确率的关系,诊断准确率可达到100%。 展开更多
关键词 故障诊断 火力发电 网格搜索 k近邻算法 投票加权
下载PDF
基于WT-kNN的沥青混凝土心墙坝渗流监测数据异常检测
15
作者 毛建刚 阿尔娜古丽·艾买提 +1 位作者 颜志光 廖攀 《西北水电》 2024年第3期54-60,共7页
安全监测数据的质量,对沥青混凝土心墙坝安全状况分析具有重要意义。时间效应导致的趋势性问题是渗流监测数据异常检测的难点。模态分解方法能较好地对时间序列的趋势项进行分离,进而识别处异常信号。但是,土石坝渗流监测数据中的异常... 安全监测数据的质量,对沥青混凝土心墙坝安全状况分析具有重要意义。时间效应导致的趋势性问题是渗流监测数据异常检测的难点。模态分解方法能较好地对时间序列的趋势项进行分离,进而识别处异常信号。但是,土石坝渗流监测数据中的异常值和真实信号往往存在模态混叠。为了解决上述问题,通过引入了小波变换结合局部kNN加权回归(WT-kNN)异常检测方法,使用连续小波变换分离趋势项,通过局部kNN加权回归进一步对小波变换的检测结果进行筛选,提高模型的异常检测准确率。工程应用结果表明:对于粗差占比2.5%~10%的监测序列,WT-kNN的召回率均高于95%,误判率低于5%;该模型与WT-MAD方法和SSA-DBSCAN方法对比实验验证了WT-kNN的有效性和优越性。敏感性分析结果表明,提出模型对异常值数量占总数据量比例和异常值波动范围大小敏感性低,可为后续监测数据分析处理及预测预警建立基础。 展开更多
关键词 小波变换 局部k近邻算法 大坝安全监测 异常检测
下载PDF
激光点云线性KNN算法FPGA实现及加速 被引量:1
16
作者 陈小宇 阳梦雪 +1 位作者 李常对 赵鹏程 《应用科学学报》 CAS CSCD 北大核心 2023年第5期831-839,共9页
针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜... 针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜索的方法。首先给出了三维激光点云KNN算法的MPSoC FPGA实现框架;然后详细阐述了每个模块的设计思路及实现过程;最后利用MZU15A开发板和天眸16线旋转机械激光雷达搭建了测试平台,完成了三维激光点云KNN算法MPSoC FPGA加速的测试验证。实验结果表明:基于MPSoC FPGA实现的三维激光点云KNN算法能在保证邻近点搜索精度的情况下,减少邻近点搜索耗时。 展开更多
关键词 三维激光点云匹配 k最近邻算法 现场可编程门阵列加速 并行计算
下载PDF
融入KNN算法的二维数组教学案例设计
17
作者 张红霞 高荣 +1 位作者 徐辉 柯琦 《计算机时代》 2023年第6期142-144,148,共4页
为了让计算机专业学生在专业基础课中尽早接触人工智能中的一些概念和算法,激发学生的学习兴趣,设计了一个融入K-近邻算法(K-Nearest Neighbor,KNN)的二维数组教学案例,并对案例教学实施过程、实践任务分解、案例运用效果等方面进行了... 为了让计算机专业学生在专业基础课中尽早接触人工智能中的一些概念和算法,激发学生的学习兴趣,设计了一个融入K-近邻算法(K-Nearest Neighbor,KNN)的二维数组教学案例,并对案例教学实施过程、实践任务分解、案例运用效果等方面进行了阐述。实践结果表明,使用该案例进行教学有利于提高课程教学质量。 展开更多
关键词 二维数组 knn 教学案例 人工智能
下载PDF
基于K-Nearest Neighbor和神经网络的糖尿病分类研究 被引量:6
18
作者 陈真诚 杜莹 +3 位作者 邹春林 梁永波 吴植强 朱健铭 《中国医学物理学杂志》 CSCD 2018年第10期1220-1224,共5页
为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及... 为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及空腹血糖作为特征输入,将正常、糖尿病前期和糖尿病作为类别输出,利用K-Nearest Neighbor(KNN)和神经网络两种方法对其分类。发现在增加糖化血红蛋白作为分类特征之一时,KNN(K=3)和神经网络的分类准确率分别为81.8%和92.6%,明显高于没有这一特征时的准确率(68.1%和89.7%),KNN和神经网络都可以对食蟹猴数据进行分类和识别,起到早期筛查作用。 展开更多
关键词 糖尿病 糖化血红蛋白 空腹血糖 knn 神经网络 食蟹猴
下载PDF
一种基于特征加权的K Nearest Neighbor算法 被引量:6
19
作者 桑应宾 刘琼荪 《海南大学学报(自然科学版)》 CAS 2008年第4期352-355,共4页
传统的KNN算法一般采用欧式距离公式度量两样本间的距离.由于在实际样本数据集合中每一个属性对样本的贡献作用是不尽相同的,通常采用加权欧式距离公式.笔者提出一种计算权重的方法,即基于特征加权KNN算法.经实验证明,该算法与经典的赋... 传统的KNN算法一般采用欧式距离公式度量两样本间的距离.由于在实际样本数据集合中每一个属性对样本的贡献作用是不尽相同的,通常采用加权欧式距离公式.笔者提出一种计算权重的方法,即基于特征加权KNN算法.经实验证明,该算法与经典的赋权算法相比具有较好的分类效果. 展开更多
关键词 特征权重 k近邻 交叉验证
下载PDF
基于POD-RBF代理模型和特征点KNN校正的电力舱温度反演方法
20
作者 姜岚 李远 +2 位作者 智李 周蠡 赵阳 《电子测量技术》 北大核心 2023年第24期68-76,共9页
为解决数值模拟方法计算不同工况下电力舱整体温度时算力需求大、适应性差等问题,本文提出了一种基于POD-RBF代理模型和特征点KNN校正的电力舱温度反演方法。该方法基于仿真计算得到的不同工况下电力舱温度场数据,利用本征正交分解和径... 为解决数值模拟方法计算不同工况下电力舱整体温度时算力需求大、适应性差等问题,本文提出了一种基于POD-RBF代理模型和特征点KNN校正的电力舱温度反演方法。该方法基于仿真计算得到的不同工况下电力舱温度场数据,利用本征正交分解和径向基函数方法构建电力舱的温度反演代理模型,以避免重复计算,从而快速得到仿真模型的近似解。同时,使用K最近邻算法将特征温度点引入反演模型中,以此校正温度反演误差,提高反演的准确性和适应能力。以实际电力舱为例,对指定工况下的电力舱进行了温度反演。结果表明,该方法可以在电力舱内电缆通流情况以及特征温度点温度已知的情况下实现电力舱的实时温度反演,其反演温度与仿真计算温度的最大相对误差为0.96%,满足工程运用标准。 展开更多
关键词 电力舱 温度反演 有限元仿真 本征正交分解 径向基函数 k最近邻算法
下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部